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Abstract

I design a structural model of demand for electric vehicles and the supply of a pub-
lic charging infrastructure by forward-looking local planners. Using Canadian data, I
study the cost-effectiveness of electric vehicle incentives in this context. Subsidizing
electric vehicle purchases almost doubled adoption in Quebec but had only a small
impact on network provision. I conduct a rigorous cost-benefit analysis to study the
environmental performance of Quebec’s rebate program. I find that the marginal abate-
ment cost of emissions is substantially higher than the social cost of carbon, suggesting
that policymakers in Quebec over-invested on electric vehicle incentives.

Keywords: electric vehicles, charging stations, subsidies, emission abatement, cost-
benefit analysis, indirect network effects.
JEL Codes: L91, H41, Q58.

1 Introduction

Electric vehicles (EV) constitute one of the most promising innovations for lowering carbon

emissions from the transportation sector, as long as clean energy production is available.
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Several barriers prevent the widespread adoption of this technology. The high initial purchase

cost or the low availability of recharging sites may lead potential buyers to select internal

combustion engines over electric ones, even if they place a high value on reducing their carbon

footprint, factor in future fuel cost savings, or the lower maintenance costs associated with

driving an electric vehicle. At the same time, if few people own and use an electric vehicle,

there is little incentive for network operators to invest in local charging infrastructures. This

slows down the transition to electric vehicles.

Policymakers have introduced a wide range of incentives to convince consumers to adopt

this new technology. Perhaps the most common intervention is to subsidize the purchase

of new electric vehicles directly. This narrows the price gap between internal combustion

and electric vehicles, and leads to increased adoption. At the same time, financial incentives

contribute to establishing a market demand for charging services. This encourages network

operators to invest in charging station infrastructures, which yields additional electric vehicle

sales through indirect network effects.

While some jurisdictions leave the development of charging infrastructure to the private

sector (often subsidizing new stations), others choose to provide charging services to electric

vehicle owners in the form of a public good. This is the case of the Canadian province of

Quebec, where county-level governments are responsible for the provision of local charging

infrastructures. I propose a structural model that reflects this reality. Its key innovation

compared to previous works1 is that charging networks are provided by forward-looking

local planners. I find that ignoring the forward-looking behavior of network operators over-

estimates the importance of network effects in electric vehicle markets. This result is impor-

tant for the design of electric vehicle incentive programs as this would lead to over-estimating

their performance.

I study the introduction of the electric car in Canada and the cost-effectiveness of electric

vehicle incentive programs. I gather a novel dataset of vehicle registrations and charging

station installations in two Canadian provinces, Ontario and Quebec, for the period spanning

2012 to 2020. I start with a difference-in-differences analysis to study the direct impact of

subsidies on sales, and their indirect impact on charging station provision. The identifying

variation comes from changes to Ontario’s rebate program that occurred in 2016 and 2018.

Originally, Ontario and Quebec offered similar electric vehicle subsidies, between $8,000 and

$8,500. The government of Ontario improved subsidies to $14,000 in February 2016, and

phased out its incentive program in late 2018.

Subsidies are very effective at increasing electric vehicle adoption. The estimated intent-

to-treat effect suggest that the improvements to Ontario’s subsidies led to a 26.7% increase in

1See for example Li et al. (2017), Pavan (2017), Springel (2021), Remmy (2022), or Li (2023).
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electric vehicle adoption, while the abolition of the program reduced sales by 66.7% compared

to baseline. I extend the analysis and estimate a continuous treatment effect model. I find

that $1,000 in subsidies is associated with a 7.7% increase in electric vehicle sales. This is

qualitatively similar to findings by Muehlegger and Rapson (2022), who study an electric

vehicle incentive program in California using a quasi-experimental setup.

I also study the indirect effect of these subsidies on charging station deployment. The

idea is that network supply might respond to shifts in the aggregate demand for charging

services emanating from new electric vehicle owners.2 I do not find evidence that the policy

changed the configuration of local networks in the short-run. Furthermore, I cannot find

evidence that local networks changed along other dimensions. For example, I see no change

in the number of charging points at each site or the share of fast charging stations available.

Together, these findings suggest that network provision is rigid in the short-run and cannot

respond immediately to an unpredicted surge in demand from new electric vehicle owners.

To the best of my knowledge, this is a new result in the literature.

I rely on a structural estimation to address the cost-effectiveness of electric vehicles

subsidies and their overall environmental performance. I focus the analysis around the

province of Quebec, where charging infrastructures are provided to users as a public good

by local county-level governments. This contrasts with other jurisdictions where network

providers are private, profit maximizing firms. This setup is appealing for several reasons.

First, it allows me to ignore the effects of price competition or product differentiation in the

charging market. Charging and energy prices in Quebec are regulated, and the vast majority

of chargers are homogeneous. Second, it avoids spatial competition concerns which can lead

to multiple equilibria when networks are provided by more than one firm. Finally, it avoids

issues related to platform competition, as all local networks are connected on the unified

government provided platform.

I develop a structural model of consumers’ demand for cars and the public provision of

charging station infrastructures. In the model, consumers consider the current provision of

charging stations in their surroundings at the time of purchase and are myopic about future

states of the market. Charging stations are provided by forward-looking local planners in

the form of a public good. Specifically, each local planner chooses the size of their charging

infrastructure in each period, taking into account the aggregate valuation of the network by

users and the fixed cost of installing additional capacity. I show that ignoring the forward-

looking behavior of local planners leads to over-estimating their response to increases in the

electric vehicle base. In the case of Quebec, this translates to over-estimating the contribution

2Springel (2021) and Remmy (2022) have studied this question using a structural estimation. Both works
focus on electric vehicle subsidies, charging station subsidies, and their interaction.
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of network effects to sales by 26.5%.

I conduct counterfactual simulations to validate the findings from the difference-in-

differences analysis. I find that electric vehicle rebates led to a 91.4% increase in electric

vehicle sales in Quebec between 2012 and 2020. This translates to a 10.6% increase per

$1,000 in subsidies. Meanwhile network size increased by 10.1% over the same period. This

suggests that the rigidities in network provision vanish in the long-run. However, the indirect

impact of electric vehicle incentives on charging station deployment remains small. To place

these results in perspective, my results imply that charging stations are provided to electric

vehicle owners at the rate of one station per 156 electric vehicles. This is significantly lower

than findings by Springel (2021) and Remmy (2022).

Finally, I construct a flexible framework to study the environmental performance of non-

marginal environmental policies. I consider the case of a social planner who maximizes

social welfare taking into account the environmental externalities tied to emissions from

new car sales. I use this framework alongside the structural model primitives to conduct

a rigorous cost-benefit analysis of the Canadian electric vehicle incentive programs. My

findings suggest that the marginal abatement cost of emissions is $338 per ton of CO2. This

is above conventional measures of the social cost of carbons, which suggest an over-investment

on subsidies beyond what is efficient.

Related literature. This paper contributes to the literature on several fronts. First, I con-

tribute the the growing literature that studies electric vehicle markets. Notable contributions

include Pavan (2017), Li et al. (2017), Springel (2021) on network effects in both alterna-

tive fuel and electric vehicle markets. I add to this literature by considering the case where

network operators are forward-looking. As mentioned above, ignoring the forward-looking

nature of network operators inflates the contribution of network effects in counterfactual

simulations. Li (2023) studies the impact of unifying competing standards for charging elec-

tric vehicles. She focuses on the case where car manufacturers both provide electric vehicles

and the infrastructure to charge them. I instead focus on the case where charging stations

are provided publicly by regional governments and compatibility is not an issue. Other

works on electric vehicles include Remmy (2022) on driving range provision, Armitage and

Pinter (2021) on electric vehicle mandates, Dorsey et al. (2022) on consumers’ valuation of

charging networks, and Johansen and Munk-Nielsen (2020) on the synergy between fuel and

electric vehicles within a multi-car household. Close to this research is the work of Xing et al.

(2021) who show that recovering precise substitution patterns is crucial to estimating the

environmental impact of electric vehicle incentives. My methodology allows for estimating

very flexible elasticities of network supply which in turn enrich the substitution patterns
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on the demand side. In particular, this helps identifying the substitution between internal

combustion and electric vehicles which is important for environmental policy analysis.

This paper fits in the wider literature that studies the environmental regulation of the

car market. Previous works have focussed on the environmental performance of subsidies

(Beresteanu and Li, 2011; D’Haultfoeuille et al., 2014; Huse and Lucinda, 2014; DeShazo

et al., 2017; Azarafshar and Vermeulen, 2020; Sheldon and Dua, 2020), electric vehicle rebates

passthrough (Beresteanu and Li, 2011; Sallee, 2011; Muehlegger and Rapson, 2022), gas taxes

(Allcott and Wozny, 2014; Barla et al., 2016; Grigolon et al., 2018), emission standards

(Durrmeyer and Samano, 2018; Reynaert, 2021), cash for clunker programs (Li et al., 2013;

Grigolon et al., 2016; Li et al., 2022; Kitano, 2023), attribute-based regulation and taxation

(Knittel, 2011; Ito and Sallee, 2018; Chaves, 2019), or comparing financial and non-monetary

incentives (Jenn et al., 2018). Advances on estimating the environmental impacts of these

policies include Durrmeyer (2022) which studies the distributional impacts of the French

rebate program, Tsanko (2023) on the environmental benefits of subsidizing plug-in hybrids

when consumers do not recharge them optimally, and Holland et al. (2019) on air pollution

patterns that occur upstream in the production process. I provide a general framework

for conducting cost-benefit analysis based on the marginal cost of abatement rather than

the average cost. I show that policy design based on the average abatement cost produces

misleading policy recommendations (unless the policy change under study is marginal). My

framework could be used to study a wide array of environmental regulations including those

described above.

Lastly, I contribute to the literature on estimating network effects and their role in the

adoption of breakthrough innovations. Advances in this field touch a wide range of new

products: green cars (Pavan, 2017; Li et al., 2017; Springel, 2021; Remmy, 2022; Li, 2023),

compact discs (Gandal et al., 2000), video games (Clements and Ohashi, 2005; Corts and

Lederman, 2009), software (Gandal, 1995), microcomputer chips (Gandal et al., 1999), and

personal digital assistants (Nair et al., 2004). I extend these literatures to include the case

where the complementary product (here the charging station) is provided as a public good

by forward-looking local planners. I find in general that network effects are weaker in this

context.

The rest of the paper is organized as follows. Section 2 provides background information

on the Canadian electric vehicle market. Section 3 studies the short-run effect of electric

vehicle subsidies on sales and charging station deployment. I describe a structural model of

demand for cars and the supply of a public charging infrastructure in Section 4. Estimation

and counterfactual results are presented in Section 5. I conduct a rigorous cost-benefit

analysis in Section 6 to assess the environmental performance of subsidy programs. Section

5



7 provides concluding remarks.

2 The Canadian Market for Electric Vehicles

The transportation of passengers and freight accounted for 22% of all Canadian greenhouse

gas emissions in 2021, ranking second behind oil and gas production.3 As such, the electri-

fication of transportation has become a prime concern to both provincial and federal-level

policymakers in Canada. I focus my analysis of electric vehicle incentives around the two

largest Canadian provinces, Quebec and Ontario, which together account for two thirds of

Canada’s population. Both provinces offered generous rebates to new electric vehicle own-

ers, starting as early as 2010. Moreover, electricity production in these provinces is almost

exclusively emission-free. This provides a clean setup to study emission reductions resulting

from the electrification of transportation.

I begin with a description of the various Canadian policies that are relevant to the

analysis. I focus on three financial incentive programs offered by the provincial government

of Ontario, the provincial government of Quebec, and the federal government of Canada. To

paint the broadest picture possible, I discuss the financial and the non-financial incentives

that are offered in each jurisdiction. I also describe how charging station networks are

developed, as there are significant differences between the two provinces. Ontario relies

on a more traditional model which leaves the development of local networks to the private

sector. Meanwhile, the government of Quebec develops public networks in partnership with

county-level governments, with little contribution from private operators.

My analysis combines novel data from three sources. I obtain car registration data

from the Société d’Assurance Automobile du Québec and the Ministry of Transportation of

Ontario. The Quebec dataset is at the individual registration level while the Ontario dataset

is aggregated at the product, county, quarter-by-year level. I combine the registration data

with car characteristics obtained online from The Car Guide and the Auto Trader websites.4

Both are leading source of information on passenger vehicles in Canada. Finally, I obtain the

location, the operator’s name, and the installation date of each charging station in Quebec

and Ontario from Natural Resources Canada and Hydro-Quebec. Additional details on the

data are relayed to Appendix B.

3Source: Environment and Climate Change Canada.
4See https://www.guideautoweb.com/en/ and https://www.autotrader.ca.
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2.1 Policy environment

Timeline. The transportation sector is one of the leading contributor to carbon emissions

in Canada. Absent federal initiative, the provincial governments in Ontario and Quebec

launched separate electric vehicle incentive programs in 2010 and 2012 respectively.5 The

stated goals of the policies were to support the transition to electric vehicles, reward first

adopters, and create a market demand for this new technology. Increasing adoption also

creates a market demand for charging services, which encourages investments into charging

stations from private and public operators.

While Quebec’s Roulez Vert Program was maintained over time, the government of On-

tario modernized its Electric Vehicle Incentive Program in February 2016.6 On that occasion,

subsidies for battery electrics and long-range plug-in hybrids were significantly increased,

from $8,500 to $14,000. For short-range plug-in hybrids, the rebate was slightly increased

and made progressive in the capacity of the battery. Policymakers justified these improve-

ments with Ontario’s poor performance in terms of electric vehicle adoption compared to

the rest of Canada.

The election of a conservative government in June 2018 led to the abolition of Ontario’s

cap-and-trade carbon tax in early October 2018. Since this carbon tax was the principal

source of funding for electric vehicle subsidies, the Electric Vehicle Incentive Program was

terminated at the same time. There is some anecdotal evidence in news reports that con-

sumers were taken by surprise by this sudden change, as the government did not campaign

extensively on these subsidies during the 2018 election cycle. With only a few weeks’ notice,

there was not a lot of time to capitalize on the rebate before the program expired, since

ordering an electric vehicle usually took between 6 to 12 months at the time.

In May 2019, the federal government of Canada stepped in with its Incentives for Light-

Duty Zero-Emission Vehicles Program (iZEV). The stated objectives were to make subsidies

available to all Canadians and to ensure that electric vehicle sales targets were met nation-

wide.

Financial incentives. The detailed list of incentives is summarized in Table 1. Rebates

are obtained automatically at the point of sale and are deducted from the transaction price.7

To be eligible, consumers must either purchase the vehicle, or sign a long-term lease. Short-

5Other Canadian provinces also offer subsidies. These include British Columbia (up to $4,000), Newfound-
land and Labrador (up to $2,500), Prince Edward Island (up to $5,000), New Brunswick (up to $5,000), and
Nova Scotia (up to $3,000).

6The implementation was made retroactive to November of 2015.
7Tesla is an exception, as they did not have points of sale in Canada in that period. In that case,

consumers must fill in additional paperwork and receive a mail-in refund a few weeks later.
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Table 1: Canadian incentive programs

Batery electric Plug-in hybrid Plug-in hybrid
(long range) (short range)

Ontario program, phase 1 (2010 – 2015)
MRSP below 150,000, batt. cap. 17 kWh or above 8,500 8,500 8,500
MRSP below 150,000, batt cap. 4 kWh – 17 kWh n/a 5,000 5,000
Non-financial incentives:
• Privileged access to high occupancy vehicle lanes ✓ ✓ ✓
• Free access to high occupancy toll lanes ✓ ✓ ✓
• Free parking when charging ✓ ✓ ✓

Ontario program, phase 2 (2016 – 2018)
MRSP below 75,000, batt. cap. 16 kWh or above 13,000 13,000 n/a
MRSP below 75,000, batt. cap. 5 kWh – 16 kWh n/a n/a 6,000 – 9,600
MRSP below 75,000, 5 seatbelts +1,000 +1,000 +1,000
MRSP between 75,000 and 150,000 3,000 3,000 3,000
Non-financial incentives:
• Privileged access to high occupancy vehicle lanes ✓ ✓ ✓
• Free access to high occupancy toll lanes ✓ ✓ ✓
• Free parking when charging ✓ ✓ ✓

Quebec program (2012 – pres.)
MRSP below 75,000 8,000 8,000 4,000
MRSP between 75,000 and 125,000 3,000 0 0
Other financial incentives:
• Used vehicle (original MRSP below 75,000) 4,000 0 0
• Installation of a home charger 600 600 600

Non-financial incentives:
• Privileged access to reserved lanes ✓ ✓ ✓
• Free access to toll bridges and toll lanes ✓ ✓ ✓
• Free parking (in some municipalities) ✓ ✓ ✓
• Free access to several ferries ✓ ✓ ✓

Federal program (2019 – pres.)
Passenger car, base model MRSP below 55,000 5,000 5,000 2,500
SUV and minivan, base model MRSP below 60,000 5,000 5,000 2,500

NOTE: All values are in current Canadian dollars. The rebate for plug-in hybrids in Ontario, phase 2, increases
from $6,000 to $9,600, in steps of $365 per kWh of battery capacity. The Chevrolet Volt is the only plug-in
hybrid that qualifies as “long range” in Quebec. For the federal rebates, plug-in hybrids with a driving range
above 50km on electric mode qualify as “long range”.

term leases are eligible for a fraction of the rebate, determined on a pro rata basis.

Additional financial incentives are offered in Quebec. For example, the program includes

subsidizing the purchased of a used electric vehicle (up to $4,000), the installation of a home

charger ($600), and the installation of large-scale charging capacity in multi-unit housing

or in workplaces (up to 50% of installation costs). While these policies are interesting and

could play a role in increasing adoption, I am forced to ignore their contribution due to data

limitations.

I do not observe car ownership through time. As such, transactions on the secondary

market are unobservable. To assess the relative size of the secondary market, I compare the
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total spending on used car subsidies to the total program expenditure. I find that 1.8% of

the program’s funds went to subsidizing used cars. To fix ideas, 94.1% of total spending

went to subsidizing new cars. Back of the enveloppe calculations suggest that the primary

market was around 30 times larger than the secondary market between 2012 and 2020.

I also ignore the effect of subsidizing home chargers due to data limitations. The key

problem is that I do not observe which consumer applied for and received a home charger

subsidy. Furthermore, there is no requirement that new owners install a home charger in the

same year as they purchase an electric vehicle. Acquiring a home charger can cost between

a few hundred to a few thousand dollars, but is not absolutely necessary to charge at home.

Government spending on home chargers totalized 4% of the total program expenditure in

Quebec.

Non-financial incentives. Several non-financial incentives are offered to encourage elec-

tric vehicle adoption. They are normally tied to registering the car under a green license

plate, which provides advantages all over Canada and in the United States. Registering an

electric vehicle under a green license plate is mandatory for safety reasons. Both provinces

offer similar non-financial incentives. They include a privileged access to dedicated lanes

(e.g. carpool lanes), a free access to toll lanes or bridges, and dedicated free parking spaces.

Additional details on non-financial incentives are available in Table 1.

2.2 Network deployment

Table 2 presents the distribution of all charging stations by province and operating network.

There are striking differences between the two provinces. The first one is the sheer difference

in the size of the networks. In per capita terms, there are more than four times more

stations in Quebec than in Ontario. Second, Ontario’s network is predominantly operated

and developed by private firms (even though most stations are installed on the street and

are considered as public). In contrast, Quebec’s market is dominated by the government

provided platform, the Electric Circuit, with little competition from private firms.8

Network provision in Quebec does not follow a traditional model of demand and supply.

Instead, the provincial government enters partnerships with regional governments, shopping

malls, restaurant chains, and workplaces for the development of local charging station in-

frastructures. On one hand, the provincial government provides the platform (including the

8Tesla and Flo are the only other firms involved in Quebec. Tesla is involved in the development of its
own network, which insure that Tesla owners can reach every destination in North America. Stations are
typically located in strategic locations that facilitate long distance travels. Flo is the network developed by
AddÉnergie, a company based in Quebec that manufactures and sells chargers.
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Table 2: Network operators

Ontario Quebec

Nb. stations Share total Nb. stations Share total

ChargeLab 18 0.02 1 4e-4
ChargePoint Network 219 0.20 70 0.03
Electric Circuit 29 0.03 1,960 0.70
Electrify Canada 4 4e-3 0 0
EV Connect 20 0.02 0 0
Flo 209 0.19 376 0.13
Ivy 23 0.02 0 0
Petro-Canada 19 0.02 7 2e-3
Shell Recharge 6 5e-3 0 0
SWTCH Energy 20 0.02 0 0
Tesla Destination 222 0.20 160 0.06
Non-networked 318 0.29 237 0.08

Total 1,107 1 2,811 1

Population, in 2020 14.22 8.44
Nb. of counties 49 96

NOTE: The Electric Circuit is Quebec’s public platform. All other networks are
operated by private firms. The network size is reported for year 2020. Population
is in million.

software infrastructure, the phone app, and billing services) and coordinates maintenance. It

also regulates both the the charging price paid by consumers and the wholesale energy price

paid by the partner. On the other hand, the partner pays for the physical infrastructure

(the actual station) and the installation cost. It then collects revenues from operating that

station. Importantly, partners decide where and when to install stations, since they own

property rights on the land.

The vast majority of partners are county-level governments. I assume throughout that

they control the final decision about the size of local networks in Quebec. In practice, they

can forgo installing some stations if more private installations occur. I also maintain the

assumption that they do not coordinate on a common deployment strategy. There are no

unified political parties in Quebec that span both provincial and regional politics. County-

level governments usually form around local political figures and are insulated from provincial

or federal politics. In that context, decisions are taken in isolation from other counties or

higher levels of government.
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3 The Short-run Impact of Rebates

3.1 Setup

The Canadian market provides an ideal setup to study the short-run impact of electric

vehicles subsidies using a difference-in-differences analysis. I leverage the fact that Ontario

saw two changes in its electric vehicle rebate program to study the effect of rebates on electric

vehicle adoption and their indirect effect on charging station installations. Electric vehicle

subsidies have been stable in Quebec since their introduction in 2012 which provides me with

an adequate control group.

Figure 1 depicts the average rebate received by consumers of each province between

2012 and 2020. All values are converted to 2018 Canadian dollars (CAD). Initially, both

provinces had similar rebate programs. I will refer the period from 2012 to 2015 as the

pre-treatment period. I observe a first policy shock in 2016 when Ontario’s rebate program

was substantially increased and a second policy shock at the end of 2018 when Ontario’s

program was phased out. The federal rebate program was introduced in early 2019. Since

the phasing out of Ontario’s program and the introduction of the federal program occurred

in a short time window, I will consider them as a single policy shock. I will refer to these

periods as the first and second post-treatment periods.

Similarly to the vast majority of studies that rely on a natural experiment for identifica-

tion, it is important to discuss the potential endogeneity of these policy changes. Muehlegger

and Rapson (2022) describe best the threat to the identification of a causal effect between

subsidies and electric vehicle adoption: states are more likely to offer an incentive if the pop-

ulation they represent is predisposed to purchase an electric vehicle. There is some anecdotal

Figure 1: Average rebate by province
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evidence that points in that direction. The government in Ontario significantly increased

rebates because adoption of electric vehicles was low compared to other provinces. In this

case, endogeneity would arise from a negative correlation between consumers’ and the poli-

cymaker’s preferences and would lead to underestimating the causal effect. The program was

discontinued after Ontario abolished its cap-and-trade carbon tax which cut the main source

of funding for subsidies. In this case, there is more chance that the change was exogenous.

It is very hard in practice to test the exogeneity assumption. I perform the analysis at

the county level. This plays the double role of avoiding selection into treatment, but also

differences across counties make it less likely that the policy correlates with the outcomes,

since it is defined at the provincial level. I include several county-level demographics and

a rich set of fixed effects to control as best as possible for the potential unobserved factors

that could bias my estimates. I am also very careful in my interpretation of the results.

Summary statistics are available in Table A.1. There are some significant differences

between the two provinces, especially in terms of household income which is much higher in

Ontario. This is mitigated by the fact that housing costs are also higher in Ontario than in

Quebec. Ontario residents are also on average more educated, more conservative, more likely

to be homeowners, and more likely to belong to a visible minority group. Finally, Ontario

counties are on average three times as populous as Quebec counties.

3.2 Effect on sales

I first study the effect of rebates on electric vehicle adoption using a difference-in-differences

analysis. I index counties by m and years by t. The difference-in-differences specification is

ymt = β1(Treat× Post1)mt + β2(Treat× Post2)mt +Dmtγ + µm + λt + ϵmt,

where µm and λt are county and year fixed effects, and Dmt is a set of county-level demo-

graphics and controls. The treatment group contains counties located in Ontario and the two

treatment periods are as defined above. The dependent variable, ymt, is the log of electric

vehicle registrations by county and year.

Results are presented in the first panel of Table 3. I estimate the model first using all

electric vehicle registrations, then battery electric vehicles and plug-in hybrids separately to

ensure that the overall effect is not carried by only one of the two segments. The effects

all have the expected signs and are significant almost everywhere. The estimated intent-to-

treat effects on electric vehicle registration are 0.267 and -0.667 respectively, meaning that

the improvement to subsidies increased sales by 26.7% over baseline, and the abolition of

the program decreased sales by 66.7%. Interestingly, the effect of the two treatments are
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Table 3: Difference-in-differences analysis

No Covariates With Demographics

Dependent variable Control mean Observations Treatment 1 Treatment 2 Treatment 1 Treatment 2

Log of sales

(a) All electric vehicles 4.85 1,305 0.240*** -0.710*** 0.267*** -0.667***
(0.048) (0.078) (0.052) (0.048)

(b) Battery electric only 4.61 1,305 0.163*** -0.539*** 0.188*** -0.533***
(0.056) (0.095) (0.059) (0.053)

(c) Plug-in hybrid only 3.12 1,305 0.251 -1.363*** 0.183** -1.429***
(0.157) (0.150) (0.075) (0.092)

Log of network

(d) Nb. of locations 3.02 1,305 0.040 0.188 0.002 0.145
(0.198) (0.250) (0.129) (0.157)

(e) New location openings 2.01 1,305 0.278 0.315 0.188 0.160
(0.322) (0.291) (0.230) (0.196)

(f) Nb. of chargers 3.48 1,305 0.039 0.359 -0.113 0.258
(0.193) (0.243) (0.144) (0.198)

(g) New charger installations 2.42 1,305 0.427 0.521* 0.243 0.313
(0.376) (0.303) (0.297) (0.241)

Network characteristics

(h) Share of Fast DC stations, 0.05 1,305 0.022 0.026 0.051 0.100***
full network (0.037) (0.041) (0.032) (0.028)

(i) Share of Fast DC stations, 0.09 1,305 0.005 -0.037 0.009 0.010
new locations (0.052) (0.047) (0.057) (0.049)

(j) Avg. chargers per location, 1.77 1,305 -0.362 0.290 -0.758** 0.059
full network (0.407) (0.338) (0.316) (0.285)

(k) Avg. chargers per location, 1.87 1,305 0.399 0.382 0.192 0.406
new locations (0.313) (0.276) (0.490) (0.380)

NOTE: All regressions include county and year fixed effects, and are weighted by population. Standard errors in parenthesis
are clustered at the county level. Significance: * < 0.10, ** < 0.05, *** < 0.01.

asymmetric. The abolition of the Ontario rebate program had a much larger impact on

registrations than its bonification (this is especially true for plug-in hybrids). This does not

seem to be explained by the magnitude of the changes to subsidies.

One potential explanation is that demand slowly picks up after rebates are improved, and

sharply declines once rebates are phased out. For example, if consumers expect the policy to

be long-lasting or if information transmission is not perfect, I would not expect consumers to

immediately increase their demand for electric vehicles. This would contribute to spreading

the increase in demand over time and estimating a smaller effect. On the other hand,

information transmission does not play a role when the program is phased out: consumers

would learn that no rebates are available at the point of sale and change their mind about

purchasing an electric vehicle. In this case, the drop in demand would be immediate, and

the effect larger.

The corresponding event studies are available in Figure A.1 for completeness. They

corroborate the results from the difference-in-differences analysis. A careful observation of

these figures reveal that I cannot reject the parallel trend assumption.
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3.3 Effect on networks

I next consider the effect of electric vehicle rebates on network deployment. I use four

different definitions for network size: the total number of charging locations, the total number

of chargers, new location openings, and new charger installations. Results are presented in

the second panel of Table 3. For completeness, the corresponding event studies are available

in Figure A.2 and Figure A.3.

I do not find evidence that electric vehicle subsidies increased charging station deployment

through network effects. Since installing stations requires planning (securing funding, finding

adequate locations), network supply may react slowly to new market conditions. It is possible

that I do not observe networks for long enough to capture an effect since there were two

opposing policy changes in a short period of time. Therefore, these findings must be carefully

interpreted as short-run effects. I rely on a structural estimation in the second half of the

paper to address long-run effects.

Finally, I verify if networks changed along other dimensions not captured by network size.

For example, network operators could respond to the policy by installing more powerful

chargers or stations that can accommodate more users simultaneously. This would not

require finding additional sites. I re-estimate the model using network characteristics that are

available in the data. Results are presented in the third panel of Table 3. The corresponding

event studies are available in Figure A.4 and Figure A.5. Again, I do not find evidence that

subsidies changed networks along other dimensions in the short-run.

3.4 Continous treatment effect

I further the analysis and study the effect of rebates on sales using a continuous treatment

effect specification. Details are relayed to Appendix C. I estimate that $1,000 in additional

subsidies is associated to a 7.7% increase in electric vehicle registrations. This estimate

implies a market elasticity of -3.132 for electric vehicles. Muehlegger and Rapson (2022)

obtain a slightly lower estimate using a similar methodology. They report an elasticity of

demand of -2.1 in their study of an electric vehicle incentive program in California. The

difference between the two estimates can be explained by the fact that they use transaction

prices which are typically lower after bargaining, while I rely on list prices.

Due to data limitations, it is not possible to study the environmental performance of

Canadian subsidies using the natural experiment setting. The difficulty arises from the fact

that electric vehicles reduce emissions to the extent that they replace internal combustion

vehicles. To extend the analysis to include emission abatement would require a survey of

electric vehicle owners that inform me about their second choices (and therefore the exact
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composition of the counterfactual fleet of vehicles) or unreasonably strong assumptions about

consumers’ substitution patterns.

To circumvent these issues, I build on the findings presented in this section and estimate a

structural model of the demand for cars and the supply of a charging station infrastructure.

I recover fundamental parameters which allow me to perform counterfactual experiments

and evaluate the environmental performance of the Canadian subsidy programs. I present

the model and the results in the following sections.

4 The Model

I define a structural model to analyse the cost-effectiveness and the emission reduction poten-

tial of electric vehicle subsidies. Demand for cars is determined using the random coefficient

logit model as in Berry et al. (1995). I augment the demand specification using county-level

average demographics to capture differences in preferences among consumers, following Nevo

(2001) and Gandhi and Houde (2019). Similarly to most works on the car market, I maintain

the assumption that consumers are not forward-looking, such that demand for cars is static.

Springel (2021) provides some evidence in support of this assumption for electric vehicle

markets.

I do not model or estimate a supply side for cars. List prices are determined at the

Canadian level to avoid arbitrage opportunities between provinces. In this context, it is

unlikely that manufacturers would react strongly to provincial-level policies, unless several

provinces coordinated on a common objective.9

Finally, I define a model for charging station supply which fits the specific economic and

political context in Quebec, where county-level government are responsible for providing

a public charging station infrastructure in their jurisdiction. The network supply model

takes into account the forward-looking behavior of these local planners in a tractable, easy

to implement way. Moreover, it solves the simultaneity issue between electric vehicle sales

and station deployment by fully internalizing the demand response from potential electric

vehicle owners in the supply equation. This allow for estimating the model without relying

on instrumental variables. These advances improve on the currently available best practices.

9There is anecdotal evidence that manufacturers move inventory around the country to take advantage
of favorable electric vehicle regulations, keeping national-level prices constant.
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4.1 Demand

Consider consumer i living in county m. Each period t, this consumer chooses to purchase

one of the j = 1, ..., Jmt car makes available or to purchase nothing at all, denoted j = 0. In

choosing which product to purchase, the consumer considers the net price of each product,

pjt − τjt, where pjt is the retail price and τjt a government subsidy on product j. It also

considers observed product characteristics such as the horsepower, the driving cost, or the

engine type. I denote the vector of observed product attributes by xjt. Furthermore, the

consumer considers characteristics that are unobserved to the econometrician, summarized

by the quality index ξjmt.

For all models with an electric engine, the consumer cares about the opportunity of

charging at home or on the network. Let Nmt be the charging network size in county m at

time t, and define the indirect utility of charging as the deterministic function v(Nmt, θi),

where θi is a consumer-specific preference parameter. For any product j, the associated

indirect utility of charging is

vj(Nmt, θi) =

v(Nmt, θi), if j ∈ EV

0, if j /∈ EV
.

I select the following functional form for the indirect utility of charging, v(Nmt, θi) =

θi ln(1 +Nmt),
10 where Nmt represents the stations available to consumer i in his county of

residence, and the “1” represents the opportunity to charge at home. This means that, when

no stations are available in a region, consumers are assumed to have the option to charge at

home. The function v(Nmt, θi) is increasing at a decreasing rate in Nmt for θi > 0, such that

each additional station is less valuable to the consumer than the previous one.

I allow consumers to have heterogenous preferences in the observed product characteris-

tics. Heterogeneity is introduced in two ways. First, the average taste for observed charac-

teristics varies across regions through interactions with county-level average demographics,

denoted Dmt. Second, I allow for random coefficients to model the heterogeneity within

county. Formally, the utility consumer i receives from purchasing product j is

uijmt = βp
i (pjt − τjt) + vj(Nmt, θi) + xjtβ

x
i + ξjmt + ϵdijmt,

where ϵdijmt is a consumer-specific disturbance. Consumers’ taste parameters take the fol-

10I discuss additional functional form in Appendix E.
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lowing form,

βp
i = βp +DmtΓ

p + σpνpi ,

βx
ik = βx

k +DmtΓ
x
k + σx

kν
x
ik,

θi = θ +DmtΓ
N + σNνNi ,

where k indexes the different product characteristics in xjt and the νi = {νpi , νxi , νNi } are

jointly distributed as independent standard normal. The utility of the outside option is

normalized to ui0mt = ϵdi0mt in each market. I rewrite the utility function in terms of a mean

utility and a consumer-specific deviation,

uijmt = δjmt + µijmt + ϵdijmt,

with

δjmt = βp(pjt − τjt) +
(
(pjt − τjt)⊗Dmt

)
Γp + xjtβ

x +
(
xjt ⊗Dmt

)
Γx + ξjmt,

µijmt = σpνpi (pjt − τjt) + vj(Nmt, θi) +
∑
k

xkjtσ
x
kν

x
ik.

Assuming that the taste shocks ϵdijmt are independent and identically distributed as ex-

treme value type I, the probability that consumer i purchases product j is given by

sijmt(pt, Nmt,xt,Dmt, νi) =
eδjmt+µijmt

1 +
∑Jmt

j′=1 e
δj′mt+µij′mt

.

Taking expectation over all consumers yields the following aggregate demand for product j,

sjmt(pt, Nmt,xt,Dmt) =

∫
sijmt(pt, Nmt,xt,Dmt, νi) dF (νi).

4.2 Network supply

I consider the case of county-level governments (henceforth “local planners”) responsible for

supplying a public network of charging stations in their respective jurisdiction.11 Through-

out, I maintain the assumption that these local planners do not coordinate on a common

11In practice, network ownership in Quebec is split between the local planners and a number of fringe
firms. Since local planners control around 70% of all stations, I assume throughout that they are the sole
operator in each region. The remaining stations are installed by workplaces, shopping malls, or restaurant
chains, and are typically not organized into what I consider as competing network operators.
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deployment strategy, and that they control both the installation decision and the location of

stations within their county. Furthermore, I consider local networks to be public goods, that

is, they are non-excludable, non-rivalrous, and publicly supplied by local planners. Since I

define each station as a charging site that can accomodate two to four drivers simultaneously,

I consider the non-rivalrous assumption to be satisfied in most cases.

Law of motion. Before I define the local planner’s problem, I consider the law of motion of

the electric vehicle base. Let Qev
mt(n) and q

ev
mt(n) be the stock of electric vehicles in circulation

and the sales of electric vehicles in county m and period t given a network of size n. The

law of motion of Qev
mt(n) can be written as

Qev
mt(n) = (1− d)Qev

m,t−1 + qevmt(n), (1)

where d is the fleet depreciation rate and Qev
m,t−1 includes only past sales, hence is prede-

termined and does not depend on n.The term qevmt(n) can be recovered in each period by

aggregating over market shares and multiplying by the market potential Lmt, that is,

qevmt(n) = Lmt ·
∑
j∈EV

sjmt(pt, n,xt,Dmt).

Benefit function. I now describe the local planner’s problem. In what follows, the index

m represents both a local planner and its associated county. Each local planner m installs

charging stations in its jurisdiction to maximizes the aggregate value of the network to

electric vehicle owners given the fixed cost of adding capacity.12

Recall that electric vehicle i derives a utility of v(n, θi) from a network of size n. I define

as

Bmt(n) = Qev
mt(n)︸ ︷︷ ︸

Number of
EV owners

·


∫
v(n, θi)− v(n− 1, θi)

−βp
i

dF (νi)︸ ︷︷ ︸
Average gain in utility per EV owner

from station n


γ

the local planner’s contemporaneous benefits of increasing the network size from n − 1 to

n, where Qev
mt(n) and v(n, θi) are defined above, −βp

i is the marginal utility of income of

consumer i (βp
i is the price sensitivity), and γ is a local planner preference parameter.

12Notice that the local planners’ objective does not include the value of abated emissions. This introduces
a friction in the model between the provincial government which provides subsidies to abate emissions and
county-level governments who provide charging as a service to electric vehicle owners.
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The term in parenthesis represents the monetary equivalent of the expected gain in

indirect utility that an electric vehicle owner receives when the network size increases from

n− 1 to n. The local planner’s benefit, Bmt(n), can therefore be seen as the aggregate gain

in utility from all electric vehicle owners in county m and period t scaled by a preference

parameter γ. The preference parameter is included to allow for the planner to value more

or less charging on the network than electric vehicle owners themselves. To simplify the

notation in what follows, I denote

∆v(n) =

∫
v(n, θi)− v(n− 1, θi)

−βp
i

dF (νi),

and I can rewrite the benefit function as

Bmt(n) = Qev
mt(n) ·∆v(n)γ (2)

I impose three assumptions on the local planners’ benefit function. First, I assume that

local planners are price-takers in the charging market. This prevents local planners from

affecting consumers’ utility via driving costs. This is easily satisfied as Quebec’s provincial

government regulates both energy prices and charging prices. Second, I assume that ∆v(n) is

positive and weakly decreasing in n. This condition is sufficient to have a unique equilibrium

in network size for a given stock of electric vehicles. This is trivially satisfied if ∂v(n,θi)
∂n

≥ 0

and ∂2v(n,θi)
∂n2 ≤ 0,∀n ∈ N, and βp

i < 0,∀i. Finally, I assume that there exists a saturation

point S, such that ∆v(n) = 0 for all n > S. This last assumption not absolutely necessary,

but it simplifies the computation of counterfactuals.13

Installation decision. A local planner which chooses to install station n pays a one-time

fixed cost Fmt, unobserved to the econometrician, then reaps the lifetime benefits of operating

that station. Therefore, the value of the n-th station to the local planner is

Vmt(n) = −Fmt +Bmt(n) +
∞∑

s=t+1

ρs−t
EtBms(n, It), (3)

= −Fmt +Bmt(n) + ρEtV m,t+1(n, It), (4)

where ρ is the planner’s discount factor and V mt(·) = Vmt(·) +Fmt. Equation (3) introduces

some new notation for the expected benefits. Let It+k indicate the installation date of station

13In practice, my analysis is very robust to the saturation point assumption, as long as saturation points
are chosen to be well above current network sizes. At the estimation stage, I set Smt = Lmt/200, where Lmt

is the number of households in county m and period t.

19



n. I define EtBms(n, It+k) as the expected benefit of station n in period s > t given that

station n was installed in period t+ k.

The planner chooses to install station n in period t if it is more profitable than waiting.

Its installation decision can be summarized as follows,

amt(n) =

Install, if Vmt(n) ≥ max
k≥1

{
ρkEtVm,t+k(n, It+k)

}
Not install, otherwise

, (5)

where the notation for EtVms(n, It+k) is similar to that of EtBms(n, It+k).

To simplify the expression in (5), I impose some additional assumptions on the planners’

expectations. These assumptions are:

A1. 0 ≤ EtFm,t+k − ρEtFm,t+k+1 ≤ K(ρ), ∀k ≥ 1;

A2. Etqm,t+k(n) = (1 + gt)
kqmt(n), ∀n ∈ N, ∀k ≥ 1;

A3. qmt(n) > qmt(n− 1), ∀n ∈ N.

Assumption A1 is the most restrictive and imposes limits on how the expected fixed costs

vary over time from the point of view of period t.14 There is some anecdotal evidence that the

costs of charging infrastructure decreases over time and Assumption A1 imposes that these

costs do not decrease too fast. Assumption A2 states that the local planners’ best guess

about future electric vehicle sales are current sales, multiplied by some exogenous growth

rate (1 + gt). In some sense, local planners are uncertain about future market conditions,

such that their expectation about sales is based on current sales. Finally, Assumption A3

holds trivially by strict monotonicity of consumers preferences.

Under these assumptions, I can show that

max
k≥1

{
ρkEtVm,t+k(n, It+k)

}
= ρEtVm,t+1(n, It+1), (6)

and the installation condition in (5) collapses to a comparison between period t and t+1. The

full proof and an extended discussion on assumption A1 – A3 is available in Appendix D,

Lemma 1.

Equilibrium condition. I denote the last station installed by N . It must be that local

planner m found it weakly beneficial to install station N , but not N + 1. Hence the equi-

librium network size at any given point in time has to satisfy the following two inequality

14The constant K(ρ) is defined explicitly in Appendix D, see Lemma 1.
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conditions,

Vmt(N) ≥ ρEtVm,t+1(N, It+1) (7)

and

Vmt(N + 1) < ρEtVm,t+1(N + 1, It+1). (8)

I focus on equation (7) as solving (8) follows the same logic with the reversed inequality.

Consider first the right-hand side the inequality. By taking expectation over Vm,t+1(·), I can
show that

ρEtVm,t+1(N, It) = −ρEtFm,t+1 +
∞∑

s=t+1

ρs−t
EtBms(N, It), (9)

= −ρEtFm,t+1 + ρEtV m,t+1(N, It). (10)

I can then rewrite the inequality condition in (7) as

Bmt(N) + ρEtV m,t+1(N, It)− ρEtV m,t+1(N, It+1)︸ ︷︷ ︸
Discounted future value of installing station N

in period t versus period t+ 1

≥ Fmt − ρEtFm,t+1. (11)

The bracketed term in equation (11) is the discounted future value of installing station N

in period t compared to installing it in period t + 1. Very intuitively, installing station N

in period t will convince some additional consumers to buy an electric vehicle in period t

which permanently increases the stock of electric vehicle. Then, the local planners will reap

benefits from these marginal consumers into the future. I can show that

ρEtV m,t+1(N, It)− ρEtV m,t+1(N, It+1) =
ρ̃

1− ρ̃
∆v(N)γ

(
qevmt(N)− qevmt(N − 1)

)
︸ ︷︷ ︸

Discounted lifetime benefits
of marginal consumers

, (12)

where qevmt(N) − qevmt(N − 1) are the marginal consumers that purchase an electric vehicle

when station N is installed, ρ̃
1−ρ̃

∆v(N)γ is the per driver discounted lifetime benefit of the

local planner, and ρ̃ = ρ (1 − d) is a composite discount factor. The full proof is relayed to

Appendix D, Lemma 2. To simplify the notation in what follow, I denote

∆qevmt(N) = qevmt(N)− qevmt(N − 1),
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and I rewrite the inequality conditions in (7) and (8) as(
Qev

mt(N) +
ρ̃

1− ρ̃
∆qevmt(N)

)
∆v(N)γ ≥ Fmt − ρEtFm,t+1 (6)

and (
Qev

mt(N + 1) +
ρ̃

1− ρ̃
∆qevmt(N + 1)

)
∆v(N + 1)γ < Fmt − ρEtFm,t+1 (7)

Combining and taking logs yield the equilibrium condition,

λN ln
(
∆v(Nmt)

)
+ λQ ln

(
Qev

mt(Nmt) +
ρ̃

1− ρ̃
∆qevmt(Nmt)

)
≥ ϵnmt

> λN ln
(
∆v(Nmt + 1)

)
+ λQ ln

(
Qev

mt(Nmt + 1) +
ρ̃

1− ρ̃
∆qevmt(Nmt + 1)

)
,

where ln
(
Fmt − ρEtFm,t+1

)
= ωϵnmt, λ

N = γ/ω, and λQ = 1/ω.

Network supply. I assume throughout that ϵnmt is independent and identically distributed

as standard normal. Define Smt as the network saturation point. Charging station supply

can be written as follows,

Nmt =

Smt−1∑
n=1

n · 1
{
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
> ϵnmt

≥ λN ln
(
∆v(n+ 1)

)
+ λQ ln

(
Qev

mt(n+ 1) +
ρ̃

1− ρ̃
∆qevmt(n+ 1)

)}

+Smt · 1
{
λN ln

(
∆v(Smt)

)
+ λQ ln

(
Qev

mt(Smt) +
ρ̃

1− ρ̃
∆qevmt(Smt)

)
> ϵnmt

}
. (13)

The network supply function in (13) emphasizes two important features of the model.

First, the forward-looking behavior of local planners is explicit. For example, by setting ρ

to zero, local planners stop valuing the future benefits of the network associated to marginal

consumers and the term ρ̃
1−ρ̃

∆qevmt(·) vanishes. In this case, we obtain a static model similar

in spirit to Springel (2021).

Second, it clearly shows how the model internalizes the changes to the stock of electric

vehicle that arise from more station installations. A careful inspection of the law of motion

and the network supply equation reveals that network supply depends on Qev
m,t−1 which is

predetermined, but not on Qev
mt which is endogenous. Instead, station supply depends on
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qevmt(·) which is constructed from market shares, hence is a function of product characteristics,

and demand side parameters which are exogenous. This solves the simultaneity issue be-

tween charging station deployment and electric vehicle sales as the network supply equation

internalizes the equilibrium relationship. This suggests a path for estimating station supply

without relying on instrumental variables.

4.3 Identification and estimation

Demand. I have to deal with several sources of endogeneity. First, prices depend not

only on observed product characteristics but also on unobserved product quality (to the

econometrician), leading to the price endogeneity issue described in Berry et al. (1995). Sec-

ond, our estimation routine relies on the inversion of the market shares to recover mean

utilities δ(s, σ). This implies that market shares are also endogenous since they are deter-

mined jointly with unobserved car attributes.15 Concretely, this means that instrumental

variables are needed for the prices and the market shares in the demand model. Finally,

network deployment occurs simultaneously with electric vehicle sales, hence network size is

also endogenous in the demand model.

I solve the various endogeneity issues using instrumental variables. I use two separate

cost shifters to instrument for prices. Similarly to D’Haultfoeuille et al. (2019), I construct a

composite price index to capture variations in the production cost of the various car makes. I

use four key input prices: steel, iron, plastics, and aluminum. I compute a weighted average

cost per ton which I interact with each vehicle’s curb weight to create the composite price

index.16 Next, I follow Grieco et al. (2023) and use the real exchange rate between Canada

and the country each car was manufactured as an additional cost shifter.17 The real exchange

rate captures among other things variations in the cost of labor between Canada and the

car’s country of origin which affects the marginal production cost. Similarly to Grieco et al.

(2023), I lag both cost shifters by one year to reflect planning horizons. I denote the set of

price instruments by zp.

To solve for the endogeneity of the market shares, I follow the intuition in Gandhi and

Houde (2019) to construct instruments based on product characteristic differences. I use

the fact that the marketing segment is a strong dimension of differentiation, and interact it

with other characteristics to construct basis functions. Formally, I construct the following

15See Conlon and Gortmaker (2020) and Gandhi and Houde (2019).
16I assume cars are made of 56% steel, 8% iron, 8% plastics, 10% aluminum, and 18% of other materials

not captured by the index.
17Real exchange rates are obtained from Penn World Tables, version 10.0, pl con. See Grieco et al. (2023).
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instruments,

zsjmt =



(a)
∑

j′ /∈Jf
1(j′ is in same segment as j)

(b)
∑

j′ /∈Jf
1(j′ is in same segment as j)× 1(j′ has same engine type as j)

(c)
∑

j′ /∈Jf
1(j′ is in same segment as j)× dp̂j′,j

(d)
∑

j′ /∈Jf
1(j′ is in same segment as j)× dx

j′,j

(e)
∑

j′ /∈Jf
1(j′ is in same segment as j)× (Dmt ⊗ dp̂j′,j)

(f)
∑

j′ /∈Jf
1(j′ is in same segment as j)× (Dmt ⊗ dx

j′,j)

,

where dxj′,j = xj′ − xj for some continuous characteristic x ∈ x. To put it plainly, these

instruments are (a) the number of competitors within segment, (b) the number of competi-

tors within segment with the same engine type, (c) the sum of predicted price differences,

and (d) the sum of exogenous characteristics differences between products of competitors in

the same segment. Since prices are endogenous, they cannot be used to construct a differ-

entiation instrument. They still contains a useful source of variation to identify consumers’

heterogeneity in price sensitivity. I follow Reynaert and Verboven (2014) and Gandhi and

Houde (2019) and use the projection of prices on exogenous characteristics and cost shifters,

denoted p̂jt = E(pjt | xjt, z
p
jt) to construct the instruments in (c). Finally, interactions with

county-level average demographics in Dmt are used to construct instruments in (e) and (f).

I now address the endogeneity of charging stations in the demand equation. I follow the

approach in Hausman (1996) and Nevo (2001), which use the panel structure of the data to

construct instruments. Formally, the idea is to use networks in other regions to instrument

for local charging stations. The installation of new stations depends on local consumption

(i.e. the installed base of electric vehicles in a given region) and a common cost component

across regions that does not depend on consumption once I account for region fixed effects.

Networks in other regions are valid instruments for local stations as long as the correlation

between networks comes only from sharing a common cost and not from users charging over

region lines (or from common shocks that affect all markets together). This assumption

cannot hold for markets that are geographically close to each other. People travel between

neighboring regions for work or other daily activities. These commuting patterns could lead

to a significant portion of charging in a region to come from electric vehicle owners outside

the region and vice-versa. However, it is unlikely that a significant portion of consumers

charge over region lines for two counties that are geographically distant from each other.

Let distℓ,m be the distance in kilometers between county ℓ and m. I impose a distance
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threshold, denoted by K, to select networks that are far enough to be valid instrument for

local network size. I then construct a basis function based on the portion of consumers’

indirect utility for charging that does not depend on θi, that is

zNjmt =


∑

ℓ̸=m 1(distℓ,m>K) ln(1+Nℓt)∑
ℓ ̸=m 1(distℓ,m>K)

if j ∈ EV

0, if j /∈ EV
.

I use a radius of 300 kilometers from each county’s centroid to determine which networks

enter the basis function. The choice of a threshold is rather arbitrary. To document the

robustness of my results to this assumption, I estimate a simple logit demand model, and

vary the threshold in increments of 50 kilometers. The robustness analysis shows that even

very short distance threshold are appropriate. Results are available in Table A.2.

Several factors could break this instrumental variable strategy. A large scale advertise-

ment campaign that raises awareness about environmental issues or a significant investment

into charging stations from the provincial or federal governments that affects all regions to-

gether are examples. To the best of my knowledge, there was no change in the environment

over the period of interest that would threaten identification. The full set of demand instru-

ments is Zjmt =
{
zpjmt, z

s
jmt, z

N
jmt, (z

p
jmt ⊗ Dmt), (z

N
jmt ⊗ Dmt)

}
, which includes interactions

with county-level demographics in Dmt.

Estimation is done using the Nested Fixed Point algorithm described in Berry et al.

(1995). I perform the market share inversion to recover ξ(β, σ), then minimize the following

objective function,

(β∗, σ∗) = argmin
β,σ

ξ′(β, σ)ZWZ′ξ(β, σ),

whereW is some weighting matrix. As usual, the linear parameters β = {βp, βx, θ,Γp,Γx,ΓN}
can be partialled out, and the optimization is done over σ = {σp, σx, σN}. Additional details
about the estimation routine can be found in Appendix E.

Station supply. I estimate the parameters of the station supply equation by maximum

likelihood. For ϵnmt distributed as standard normal, the probability of observing a network

of size k is given by the following expression,

Pr(N = n | Qev
m,t−1,Dmt) = Φ

(
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D

)
,

− Φ

(
λN ln

(
∆v(n+ 1)

)
+ λQ ln

(
Qev

mt(n+ 1) +
ρ̃

1− ρ̃
∆qevmt(n+ 1)

)
+Dmtλ

D

)
.
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where Dmt is a set of county-level demographics. The conditional log-likelihood is then

ℓ(λ,ρ | Qev
m,t−1,Dmt) =

∑
m

∑
t

ln Pr(N = Nmt | Qev
m,t−1,Dmt),

=
∑
m

∑
t

ln

[
Φ

(
λN ln

(
∆v(Nmt)

)
+ λQ ln

(
Qev

mt(Nmt) +
ρ̃

1− ρ̃
∆qevmt(Nmt)

)
+Dmtλ

D

)

− Φ

(
λN ln

(
∆v(Nmt + 1)

)
+ λQ ln

(
Qev

mt(Nmt + 1) +
ρ̃

1− ρ̃
∆qevmt(Nmt + 1)

)
+Dmtλ

D

)]
.

In practice, estimating ρ̃ = ρ (1− d) is challenging without additional restrictions on the

likelihood. The chosen approach to deal with this identification issue is to calibrate ρ and

d to some known values, and perform the estimation on the remaining parameters λN, λQ,

and λD. The chosen values are ρ = 0.95 for the discount factor and d = 0.0832 for the

depreciation rate (the expected lifetime of vehicles is 12.02 years), so ρ̃ = 0.871. Estimation

is done by maximizing the conditional log-likelihood function,

λ∗ = argmax
λ

ℓ(λ | Qev
m,t−1,Dmt).

Computational details are relayed to Appendix E.

I now address the issue of the endogeneity of the stock of electric vehicles in the station

supply model. As stated above, the supply equation depends on Qev
t−1 which is predermined

but not on Qev
mt which is endogenous. Instead, supply depends on demand-side parameters

through the function qevmt(·). While this specification correctly accounts for the equilibrium

relationship between electric vehicle sales and station deployment at the estimation stage,

the estimation relies on the assumption that the ξjmt are uncorrelated with the ϵnmt. I

am concerned that local planners are more likely to install chargers if the population they

represent is predisposed to purchase electric vehicles. In this case, the (positive) correlation

between ξjmt and ϵ
n
mt implies that I would over-estimate λQ.

In practice, qevmt(·) is a complicated functions of all the product-level ξjmt (including non-

electric vehicles) so the impact of individual realizations of ξjmt is likely to be small since ϵnmt

is defined at the county level. Also, the supply model includes a rich set of demographics

and controls that account for shifts in consumers perception for green technology. In this

context, it is even less likely that ξjmt and ϵ
n
mt are correlated as described above.

A similar issue can arise if prices are correlated to the local preference shocks ϵnmt. This

could be problematic if the analysis relied on transaction prices. In practice, I am using

Canadian-level list prices which are unlikely to correlate strongly with county-specific shocks.

Nevertheless, I gather some empirical evidence to document whether or not this potential
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source of endogeneity is problematic. The results are presented in Table A.3. I consider the

static counterpart of the model (with ρ = 0) to remove the influence of marginal electric

vehicle owners in the estimation. I estimate three specifications and compare the results.

First, I consider the full model that internalizes the demand response from potential electric

vehicle owners. I compare the results to a version of the model without internalization, where

the endogeneity is treated using a control function approach. This is done be replacing

Qev(Nmt) and Qev(Nmt + 1) by their data counterpart Qev
mt in the conditional likelihood,

and including the residuals from the linear projection of Qev
mt on instrumental variables and

demographics in Dmt. Finally, I estimate the model without internalization and without

treatment of the endogeneity issue.

I recover very similar estimates using the static model with internalization compared

to using the control function approach. In both cases, the parameter estimate for λQ is

significantly lower than the one obtained from the specification that ignores the endogeneity

issue. This reassures that the model correctly accounts for the equilibrium relationship and

that endogeneity is not an issue.

5 Estimation Results and Counterfactuals

5.1 Demand

Summary statistics. I estimate both the demand for cars and supply of stations at the

county-year level. I focus on the province of Quebec, where stations are provided publicly

(charging stations are provided by private firms in Ontario). I define a product as a make-

model-engine combination and I set the market size to the number of households in each

market. Table A.4 presents a summary of the characteristics of the available products.

Battery electric vehicles are on average $18,000 more expensive than traditional combustion

engines while plug-in hybrids are on average $6,000 more expensive. The combined rebates

seem to cover fully the price difference for plug-in hybrids, but not for battery electric

vehicles.

The evolution of vehicle sales in Quebec is depicted in Figure 2. Panel (a) shows that total

sales are roughly constant until 2019, but then decrease due to supply chain disruptions and

economic uncertainty caused by COVID-19. Panel (b) offers a breakdown by engine type for

electric and hybrid vehicles. Sales of battery electrics and plug-in hybrids are rising steadily,

with a sharp increase towards the end of the period. Sales of non-rechargeable hybrids are

rising but slightly.

Several factors unrelated to the policy under study help explaining the sustained growth
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Figure 2: Evolution of sales
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in electric vehicle sales. One of them is the increasing electric vehicle offering, summarized in

Table 4. The number of battery electric and plug-in hybrid alternatives is rising steadily from

5 products available in 2012 to 31 in 2020. Meanwhile, the offering of internal combustion

engines seems to decline slightly in 2019 and 2020, when sales of electric vehicles are highest.

The increasing availability of charging stations could also explain part of the growth in

electric vehicle sales. The right side of Table 4 shows the evolution of the charging station

infrastructure over time. The number of stations available goes from 100 stations in 2012

to more than 2800 in 2020. Local networks are also densifying over time. This is especially

important in predominantly rural counties which have low population density. A large share

of counties initially had no charging station network. In this case, electric vehicle owners are

constrained to charging at home which act as a deterrent to the purchase of a fully electric

vehicle. By 2020, 76% of counties had more than 10 stations available, 32% had more than

25 stations, and all counties had at least one open charging location.

Table 4: Evolution of choice set and charging infrastructure

Number of products Share of counties with

Year Fuel Electric Hybrid Nb. stations 0 station 1-10 stations 11-25 stations 25+ stations

2012 165 5 9 100 0.69 0.25 0.03 0.02
2013 176 8 9 192 0.48 0.46 0.04 0.02
2014 187 11 9 339 0.29 0.62 0.04 0.05
2015 188 11 10 623 0.13 0.72 0.09 0.05
2016 186 13 10 914 0.03 0.69 0.22 0.05
2017 184 23 13 1,266 0.02 0.61 0.31 0.06
2018 184 26 13 1,616 0 0.57 0.30 0.14
2019 177 29 13 2,371 0 0.39 0.39 0.22
2020 173 31 13 2,811 0 0.24 0.44 0.32
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Estimation. Results from the demand estimation are presented in Table 5. I include the

horsepower (in 100 kW), the weight (in 100 kg), the driving cost (CAD per 100 km),18 and

the engine type as observed characteristics. I also interact these car characteristics with

average county-level demographics. The chosen demographics are the average income, the

average age, the proportion of female, the population density (number of households per

square kilometer), and a time trend.19

I include a large number of fixed effects: car makes (34 different makes), market segments

(subcompact, compact, midsize, large/luxury, crossover utility, sport utility, and minivan),

counties (96 counties), and years (9 years). These fixed effects capture unobservables such as

brand perception, or local unobserved consumer characteristics. Finally, I allow for hetero-

geneous preferences by including a random coefficient on the net price and on the constant.20

In practice, including a random coefficient on the price (or on one of the continuous

characteristics) helps producing more diverse substitution patterns between products. In

this case, it also allows for heterogenous responses to the financial incentives. The random

coefficient on the constant is useful to break the independence to irrelevant alternative be-

tween the inside and the outside good. Since this study aims at measuring the emission

reduction potential of electric vehicle subsidies, it is crucial that I measure the substitution

to the outside option accurately, or I am at risk of under-evaluating the emission reduction

potential of subsidies.

I estimate the price coefficient and its standard deviation to be -0.802 and 0.143 respec-

tively. Both are highly significant. The interaction of the price coefficient with income is

slightly positive. Since income is calculated at the county level rather than for individual

consumers, this means that consumers in richer counties are less price sensitive. The aver-

age own-price elasticity implied by these estimates is -3.288 overall, and -3.130 for electric

vehicles. I estimate the market-level price elasticity of electric vehicles to be -2.845 which is

close to the estimate I obtain in the reduced form analysis (-3.132). Computational details

related to these elasticities are available in Appendix E.

18For fuel and hybrid vehicles, driving cost is computed by multiplying fuel consumed for traveling 100
kilometers with the gas price in that county and year. For battery electric vehicles, driving cost is measured
as power required for traveling 100 kilometers, times an average charging cost of 10.9 cents per kWh. For
plug-in hybrid, I compute a weighted average of both measures based on the share of the total driving range
that is achievable driving only on electric.

19All demographics are demeaned (including the time trend) such that they do not affect the coefficients
on the observed characteristics they are interacted with.

20I also estimate a specification with a random coefficient on θ. However, the random coefficient was esti-
mated to be large with a large variance. Additionally, including this random coefficient produced insignificant
estimates for the other coefficients related to the network. To avoid producing misleading results in coun-
terfactual simulations, the final specification does not include a random coefficient on θ. For completeness,
these results are available in Table A.5.
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Table 5: Demand estimation

Demographic interactions

Estimate Income Age Gender Pop. density Trend σ

Price – Rebate -0.802 0.027 0.143
(0.034) (0.005) (0.02)

vj(N, θi) 0.358 0.195 -0.116
(0.028) (0.033) (0.03)

Power 0.943 0.182 0.040
(0.021) (0.023) (0.004)

Weight 0.217 0.083
(0.034) (0.004)

Driving cost -0.036
(0.004)

Battery electric -2.248 -0.670 0.173 -0.510
(0.079) (0.086) (0.024) (0.053)

Plug-in hybrid -2.207 -0.745 0.149 -0.565
(0.071) (0.086) (0.024) (0.052)

Hybrid -1.720 0.361 0.144
(0.021) (0.045) (0.015)

Constant -5.272
(2.783)

Observations 126,397
Nb. of markets 864
Objective function 3450.89

Avg. own-price elasticity -3.288
Avg. own-price elasticity, EV -3.131
Nb. elasticity > -1 0

NOTE: Includes brand, market segment, county, and year fixed effects. Robust standard errors in
parenthesis.

The main coefficient on network size is 0.358 and significant, which means that consumers

care about the availability of charging stations when considering the purchase of an electric

vehicle. I observe a positive interaction with income and a negative interaction with age,

both highly significant.

Interestingly, the interactions with average demographics seem to capture fairly well

the heterogeneity in preferences for the observed car characteristics. For example, the model

suggests that the preference for powerful vehicle increases with age, and that women typically

prefer more powerful vehicles compared to men. The consumer-level data also suggests that

women (on average) purchase larger, hence more powerful cars than men. Men on the other

hand, tend to purchase cars with better acceleration (power-to-weight ratio). The model

also predict that women prefer electric and hybrid vehicles more than men. The estimates

suggests that consumers in large cities dislike electric vehicles. One explanation is that the

interactions between population density and the electric vehicle dummies capture partially
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the potential for home charging which is lower in urban areas compared to rural areas.

Finally, my estimates suggest that consumers’ prefer heavier vehicles (a proxy for security)

and that this preference increases over time.

5.2 Network supply

Results from the network supply estimation are presented in Table 6. I include several

demographics that capture regional differences in consumer characteristics which may induce

local planners to install chargers. I use the share of residents that have an undergraduate

degree as a proxy for consumers’ environmental awareness and their aggregate taste for

green technologies. Additionally, I measure the potential for home charging by the share of

homeowners and an indicator for urban counties. Demand for charging services should be

higher if some electric vehicle owners cannot install and use a home charger. This in turn

should lead to more station installations.

Because of the highly non-linear nature of the model, I cannot include county fixed

effects, as these would not be identified with only nine years of data. Instead, I include the

average income, the average age, and the average household size to account for any remaining

regional differences.

I report the coefficients of both the model with forward-looking planners and the static

model. The coefficients on the share of graduates, the share of homeowners, and the urban

Table 6: Station supply estimation

Forward-looking model Static model

Estimate S.E. Estimate S.E.

λN 1.742 (0.046) 1.793 (0.049)
λQ 0.255 (0.054) 0.313 (0.054)
Avg. income -0.567 (0.068) -0.579 (0.069)
Avg. Age 1.674 (0.253) 1.748 (0.253)
Avg. household size 0.772 (0.66) 0.822 (0.659)
Share graduates 9.871 (1.016) 9.723 (1.031)
Share homeowners -3.575 (0.893) -3.438 (0.886)
Urban 0.557 (0.137) 0.494 (0.136)

Observations 830 830
Log-likelihood -2.610 -2.602

Avg. Partial effect
(

∂N
∂Q

)
0.0081 0.0123

# EV for one additional station 123.48 81.29

NOTE: Includes year fixed effects. Markets where electric vehicles are not in
the choice set and which have no electric vehicle in circulation are excluded.
The dynamic model is estimated using a discount factor or ρ̃ = 0.871. Robust
standard errors are in parenthesis are computed using 500 bootstrap replications.
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indicator are significant and have the correct signs. This reinforces the idea that environ-

mental awareness and the potential for home charging are two important drivers of charging

station supply.

The coefficients λN and λQ are difficult to interpret directly. I use them to recover the

underlying local-planner preference parameter, γ, estimated to be 6.83 and highly significant.

This means that local planners value charging more that the actual electric vehicle owners.

I also recover the average partial effect to assess the magnitude of the network effects on

the station supply side. The average partial effect implied by the forward-looking model is

0.0081. This suggest that one additional station is installed for every 123 electric vehicles

sold. Alternatively, the static model suggests that one additional station is installed for every

82 electric vehicle sold.

Ignoring the forward-looking behavior of the social planner leads to over-estimating the

magnitude of the marginal effects by about 52%. This happens because ignoring the future

gains from marginal consumers at the estimation stage means that local planners’ decisions

are explained entirely by users current valuation of networks. This leads to a larger coefficient

and a larger partial effect, which translate into false predictions in counterfactual analysis.

I quantify this difference in the next section.

5.3 Counterfactual analysis

I conduct several counterfactual simulations. Computational details are relayed to Ap-

pendix E. I want first to disentangle the direct effect of the rebates from network effects.

To that end, I compare the outcomes of a counterfactual experiment where I remove all

subsidies while keeping networks at their original levels to another experiment where net-

work is updated using the forward-looking supply model. Second, I want to understand

the impact of ignoring the forward-looking behavior of local planners in the station supply

model. To achieve this, I compare a counterfactual experiment where the local planner is

forward-looking to the case where the re-optimization of networks is done using the static

model. This allows me to quantify the bias that is introduced in this case.

The results of the counterfactual experiments are reported in Table 7. I set the baseline

to be the observed outcomes from the data (with rebates). I first consider the direct effect of

rebate programs, where networks are fixed at their observed values. The rebates contributed

to increasing sales of electric vehicles by 37,920 units, representing 45% of all registrations.

Around two thirds of these additional electric vehicles replaced internal combustion engines

and non-rechargeable hybrids. This led to a reduction in total carbon emissions in the range

of 0.995 million ton over the lifetime of these vehicles.
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Table 7: Counterfactual simulation

Observed Counterfactuals: No Subsidies

(1) (2) (3) (4)
Baseline Fixed network Forward-looking Static

Key quantities

∆ Total sales 3.248M -12,415 (-0.38%) -13,126 (-0.40%) -13,314 (-0.41%)

∆ Sales (fuel) 3.119M +25,015 (+0.80%) +26,541 (+0.85%) +26,947 (+0.86%)

∆ Sales (electric) 84,174 -37,920 (-45.05%) -40,187 (-47.74%) -40,788 (-48.46%)

∆ Sales (hybrid) 44,788 +490 (+1.09%) +519 (+1.16%) +527 (+1.18%)

∆ Charging stations 2,811 0 (0.00%) -257 (-9.14%) -315 (-11.21%)

∆ CO2 emissions 141.46 +0.995 (+0.70%) +1.053 (+0.74%) +1.068 (+0.76%)

∆ Consumer surplus 0 -524.4 – -557.4 – -566.1 –

∆ Total cost 723.2 0 (-100%) 0 (-100%) 0 (-100%)

Implied abatement costs

Avg. cost per ton CO2 – -727 – -687 – -677 –

Avg. cost per electric vehicle – -19,072 – -17,996 – -17,731 –

NOTE: Column (1) reports the baseline values from the data, where rebates are available. Columns (2) to (4)
report the change from baseline for various counterfactuals where rebates are removed. Sales (electric) includes
both battery electric and plug-in hybrid vehicles. CO2 emissions is the present-value of CO2 emissions over the
lifetime of vehicles, in million tons. Lifetime emissions are computed based on a 22,053 average mileage per year
and an average lifetime of 12.02 years. Consumer surplus in the baseline case is normalized to zero. Consumer
surplus and Total cost are in million 2018 CAD. Avg. cost per ton CO2 and Avg. cost per electric vehicle are in
2018 CAD.

I next focus on the contribution of network effects. I consider the case where the local

planner is forward-looking. The simulation suggest that electric vehicle subsidies were re-

sponsible for 257 charging station installations through their impact on sales, representing

around 9% of all stations. This is roughly one station for every 156 new electric vehicle

registrations. I take this as evidence of weak network effects on the charging station side

(in the long-run). This contrasts the existing literature on electric vehicle markets which

instead show that these network effects can be important. For example, Springel (2021) and

Remmy (2022) find that electric vehicle subsidies generate additional station installations at

a rate of 1:38 and 1:11 respectively.21 They define a charging station as a separate chargers,

while I define a charging station as a site that could potentially host more than one charger.

In the data, I observe that each charging site holds on average 2.27 chargers. Using back of

the enveloppe calculations, my results imply that new chargers are installed at a rate of 1:69,

well below these previous results. I document whether these differences can be accounted

for by ignoring the forward-looking behavior of local planners. Using the estimates from

the static model, I find that new chargers are installed at a rate of 1:57. While this is a

higher installation rate than in the forward-looking model, it is not enough to explain the full

21These figures are computed from Table 5 in each paper.
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difference between my results and previous works. Therefore, the weak estimated network

effects could be a feature of the Canadian market, or of the public provision of network.

Indirect network effects are also responsible for further increasing electric vehicle reg-

istrations by 2,267 units. That is, charging stations generate additional electric vehicle

registrations at a rate of 9:1. Thus, network effects on the consumers’ side are more im-

portant. These additional electric vehicle sales contributed to reducing carbon emissions.

Total abated emissions over the lifetime of vehicles reach 1.054 million tons, or 0.74%. The

reduction is modest compared to total fleet emissions.

I compare the estimated impact of the subsidy from the structural estimation to the

reduced form results of Section 3. I consider the results from the counterfactual experiments

to measure the long-run impact of subsidies. Counterfactual simulations suggest that electric

vehicle sales increased from 43,987 to 84,174 due to subsidies over the full period. This is

an increase of 91.4%. Back of the enveloppe calculations suggest that this is equivalent to a

10.6% increase in sales per $1,000 in average subsidy. Meanwhile, the reduced form estimates

suggests an increase of 7.7% per $1,000 in subsidies.

The structural model predicts that total network size increases from 2,554 to 2,811.

That is, the total number of charging locations increased by 10.1%. In contrast, the reduced

form estimates revealed no significant change in network size due to the policy. These

findings shed light on the rigidities affecting network supply. For example, the opening of

new location requires planning to find appropriate sites, approving budgets, ordering the

require material, and allocating resources for installation. This makes it difficult for network

operators to change supply in the short-run following a sudden surge in demand. However,

network supply eventually adapts to the new market condition in the long-run, as evidenced

from the counterfactual simulations.

I quantify the effect of ignoring the forward-looking behavior of local planers in the station

supply model. I find that doing so leads to overestimating the impact of network effects. For

example, the simulation predicts that network size increases by 315 instead of 257 and sales

by 2,868 instead of 2,267 (due to network effects). That is, the counterfactual simulation

which rely on the static supply model over-estimate the contribution of network effects to

key outcomes by 23% and 27% respectively. In this particular application, the direct effect

of the program on adoption is much larger in magnitude than the network effects, so the

overall bias is small. This could however be problematic in other contexts.

Total spending on subsidies by both levels of government reached $723.2 million. I use this

figure to compute some preliminary cost measures, which are useful to compare my results

to previous literatures. I estimate the average cost of reducing emissions to be $686 per ton

of CO2. This is similar to Xing et al. (2021), which estimate an average abatement cost
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between $581 and $662 (484 – 552 USD) per ton for a similar rebate program in the United

States. Other studies of similar incentives typically find lower estimated costs. Examples

include Huse and Lucinda (2014) on the Swedish green car rebate ($131 – 158), Beresteanu

and Li (2011) on tax incentives on hybrids in the United States ($212), and Azarafshar and

Vermeulen (2020) on the Canadian electric vehicle market ($480).
These cost measures, while informative, are inadequate to study the cost-effectiveness

of environmental policies. The reason is that the policies under study are non-marginal, so

the average abatement cost measured in these works is potentially far from the marginal

abatement cost. They also ignore the fiscal externalities to consumers and firms, and the

marginal cost of providing public funds. These factors could drastically change how we

evaluate different programs. I propose a unifying framework for studying non-marginal

environmental policies in what follows.

6 Cost-Benefit Analysis

6.1 Setup

I propose a calibration exercise to study the cost-effectiveness of the Canadian rebate pro-

grams. I setup the calibration in a very general way which could be used to study other

types of environmental regulations (e.g. gas taxes, emission standards, etc). In what fol-

lows, I consider a social planner providing electric vehicle incentives to abate emissions that

is distinct from the local planners providing charging infrastructures. Consider the following

social planner objective, where τ is the targeted policy variable,

τ ∗ = argmax
τ≥0

W(τ)− Cost(τ)︸ ︷︷ ︸
Value to society

− E(τ) · PE︸ ︷︷ ︸
Value of emissions

.

The social planner is looking to pick the policy τ ∗ that maximizes the value to society and

minimize the value of emissions that arise from the policy. For now, I take the carbon

price PE as given. The government objective function has three key inputs: a social welfare

function W(τ) which accounts for the fiscal externalities of the policy on consumers and

firms, a cost function Cost(τ) which summarizes government spendings, and an emission

function E(τ). Provided all three functions are continuously differentiable, the cost-effective
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policy rule τ ∗(PE) can be obtained by inverting the following first-order condition,22

∂W(τ ∗)

∂E(τ ∗)
− ∂Cost(τ ∗)

∂E(τ ∗)︸ ︷︷ ︸
Marginal

Abatement
Cost

= PE︸︷︷︸
Cost of
Carbon

. (14)

I now provide more details on each component of the objective function.

Social welfare function. Let Θ be the fundamental parameters governing consumers’

preferences and network provision. I define the social welfare function as a weighted sum of

the firms’ variable profits and consumers’ welfare (defined by consumer surplus). Let ψ1 and

ψ2 be welfare weights and qjmt(τ) be the quantity sold of model j in county m and period

t given policy τ . Furthermore, let cjt be the marginal cost of product j in period t.23 The

social welfare function is

W(τ) = W(τ,Θ) = ψ1 π(τ,Θ) + ψ2 CS(τ,Θ),

where

π(τ,Θ) =
∑
t

∑
m

∑
j

qjmt(τ,Θ) · (pjt − cjt)

are the firms’ aggregated variable profits, and

CS(τ,Θ) =
∑
t

∑
m

Lmt

∫
1

−βp
i

ln

(
1

si0mt(τ,Θ, νi)

)
dF (νi) + C

is the aggregate expected consumers’ surplus (identified up to a constant C).

Cost function. The cost function accounts for all government expenditures on the policy.

Recall that τ > 0 represents a subsidy in the utiilty specification and τ < 0 a tax. The cost

22The social planner problem could in principle be more complex. For example, the policymaker could take
into account congestion issues, mileage decisions of users (i.e. through modal choices), fairness concerns,
political constraints, or other types of externalities. Therefore the solution to the problem is the “cost-
effective policy” (for lack of a better terminology) only in terms of equating the marginal abatement cost to
the social cost of carbon.

23Marginal costs can be estimated from demand side parameters and car manufacturers’ first-order con-
ditions, see Berry et al. (1995).
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function can be computed as the sum of all government subsidies,

Cost(τ) = Cost(τ,Θ) = ϕ

(∑
t

∑
m

∑
j

qjmt(τ,Θ) · τjt

)
,

weighted by the marginal cost of providing public funds ϕ.

Emission function. Lifetime emissions depend on several parameters, including the car’s

level of emission ejt, its expected lifetime Tj, and the average mileage by year that a typical

owner travels mjs. I assume that the policymaker discounts future emissions according to

some discount factor ρ. The present-value of the aggregated emissions can be computed as

E(τ) = E(τ,Θ) =
∑
t

∑
m

∑
j

qjmt(τ,Θ) ·
t+Tj∑
s=t

ρt−smjsejt

 .

6.2 Calibration

I calibrate the various parameters of the social planner’s objective function. The parameters

are the welfare weights (ψ1, ψ2), the marginal cost of public funds (ϕ), the discount factor

(ρ), the average mileage per year (mjs), and the expected lifetime of vehicles (Tj).

I assume that the social planner cares about consumer surplus but not profits, to reflect

the fact that no car production occurs in Quebec. Therefore, I set the welfare weight on

consumer surplus to one and the welfare weight on profit to zero. The discount factor is set

to 95% as previously. I use data on fuel spending from the Canadian Survey of Household

Spending and local fuel costs to compute the average mileage of a representative Quebec

household in 2017. Unfortunately, the data doesn’t distinguish between households that

own one versus two cars, so I assume that all mileage is done on one vehicle. The average

mileage is set to 22,053 kilometers for all j and s. Finally, I compute the expected lifetime of

vehicles using the micro-level car registration data. I have access to the full fleet of vehicles in

ten successive years which I use to track vehicles of various ages and estimate their expected

lifetime. The expected lifetime of a new vehicle estimated to be 12.02 years.24

Lastly, I assume that the government can provide subsidies without friction at no ad-

ditional cost, hence I set the marginal cost of public funds to one. I consider alternative

calibrations in which the government has to pay an administrative fee to provide subsidies

in Section 6.4.

24Combining the expected lifetime with the average mileage by year implies that cars have an expected
total mileage of around 265,000 kilometres.
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I restrict the policy space to rebate programs that are proportional to the currently

implemented scheme. To fix ideas, let τ0 be the currently available rebate program. The set

of policies that are available to the policymaker satisfies

τ = κ · τ0, κ ∈ R+, τ0 ∈ RJ .

With this restriction, the marginal abatement cost can be computed as

MAC(κ) =
∂W(κ)

∂E(κ)
− ∂Cost(κ)

∂E(κ)
.

Restricting the policy space serves two purposes. First, it reduces the computational

burden associated with evaluating all possible policies. With J different electric vehicle

models available, solving for the cost-effective rebate program entails solving a problem in

R
J which is impractical or infeasible. More importantly, there are strong incentives for

policymakers to subsidize all models more or less equally to avoid picking winners and losers

among firms.

6.3 Cost-effective policy

I study the cost-effectiveness of rebates by considering the social planner’s optimality con-

dition. I compute counterfactuals on a grid {κ1, ..., κN} using the forward-looking supply

model, then I estimate the marginal abatement cost as

MAC(κn) =
W(κn+1)−W(κn)

E(κn+1)− E(κn)
− Cost(κn+1)− Cost(κn)

E(κn+1)− E(κn)
.

I collect the results to construct the marginal abatement cost curve as a function of κ. There

are two interpretations to the social planner’s first-order condition. On one hand, I can

assume that it holds at the current rebates. In this case, equation (14) provides an estimate

for the cost of carbon, PE = MAC(κ = 1). On the other hand, I can calibrate the cost of

carbon to known estimates and recover the cost-effective policy κ∗(PE). In what follows, I

focus on the second interpretation.

Figure 3 depicts the marginal abatement cost curve and the cost-effective policy curve

for the chosen calibrated parameters. I obverse that the marginal abatement cost is strictly

increasing in the subsidy, which insures that a stable solution to the planner’s problem exists

and is unique at a given PE. In practice, I expect rebates to exhibit decreasing returns in

term of emission abatement since the number of infra-marginal consumers increases with the

rebate but emissions abated per new owner does not. I evaluate the marginal abatement
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Figure 3: Abatement cost and cost-effective policy curves
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cost at current rebates to be $338 per ton of carbon emissions. This is larger than current

measures of the social cost of carbon.

Figure 3 also reports the corresponding average abatement costs.25 A key observation is

that the average abatement cost sits below the marginal abatement cost over the full policy

space. This has important implications for policy design. Determining the cost-effective

policy based on the average abatement cost systematically leads to an over-investment from

the social planner.

I invert the marginal abatement cost curve to recover the cost-effective policy curve. I

evaluate the cost-effective policy for two separate estimates of the social cost of carbon. The

chosen values are $45 and $183, which correspond to the average social cost of carbon and

the 95th percentile of the distribution in 2018, according to the Government of Canada.

For the lowest estimate, the cost-effective policy correspond to 23% of the current rebate

programs. For the highest estimate, the cost-effective policy correspond instead to 60.1% of

current rebates. In both cases, my analysis suggest that policymakers are over-investing on

rebates.

6.4 Alternative parametrizations

To paint the broadest picture possible, I redo the analysis using alternative sets of calibrated

parameters. Results are available in Table 8. I start from the extreme case in which the

policymaker cares only about government spendings and not welfare. This calibration is

25I construct the average abatement curve as

AAC(κn) =
W(κn)−W(0)

E(κn)− E(0)
− Cost(κn)− Cost(0)

E(κn)− E(0)
.
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Table 8: Alternative calibration results

Calibration

Description (1) (2) (3) (4) (5) (6) (7)

Parameters

• Profit weight (ψ1) 0 0 0 0.27 0.27 1 1

• Consumer surplus weight (ψ2) 0 1 1 1 1 1 1

• Marginal cost of public funds (ϕ) 1 1.3 1 1.3 1 1.5 1.3

Cost estimates

• Marginal abatement cost 873 600 338 552 290 595 420

• Average abatement cost 696 368 160 321 112 330 191

Cost-effective policy (Low SCC: $45)
• Policy (κ) 0 0 0.230 0 0.360 0.013 0.232

• Maximum provincial rebate 0 0 1,864 0 2,904 128 1,880

• Maximum federal rebate 0 0 1,165 0 1,815 80 1,175

Cost-effective policy (High SCC: $183)
• Policy (κ) 0 0.151 0.601 0.252 0.726 0.271 0.522

• Provincial rebate 0 1,208 4,808 2,016 5,808 2,168 4,176

• Federal rebate 0 755 3,005 1,260 3,630 1,355 2,610

NOTE: In all parametrization, we have ρ = 0.95, Tj = 12.02, and mjs = 22, 083. I compute two
sets of cost-effective policies based on a social cost of carbon (SCC) of $45 and $183. Calibration (3)
is the main specification. It is reproduced for comparability. Marginal abatement cost and Average
abatement cost are in CAD per ton of carbon. Provincial rebate is computed by multiplying the
cost-effective policy κ∗ by $8,000. Federal rebate is computed by multiplying the cost-effective
policy κ∗ by $5,000. The federal rebate is available as of 2019.

used widely in the literature related to the car market. In this case, the cost-effective policy

is a corner solution: the marginal abatement cost is well above any conventional measures

for the social cost of carbon for any level of the subsidy, hence the government chooses not

to subsidize electric vehicles.

I repeat the exercise for various combinations of the welfare weights and the marginal

cost of providing public funds. I consider three cases for the welfare weights. In the first case,

the policymaker takes into account consumer surplus but not profits. In the second case it

takes into account consumer surplus and the taxable part of firms profits. The corporate

tax rate in Quebec is around 27% for large firms, hence I set the welfare weight on profits

to 0.27. Finally, I consider the case where the policymaker cares fully about both consumer

surplus and profits. I interact these three parameterizations with three different values for

the marginal cost of public funds.

In all cases, the policymaker over-invests on subsidies. The cost-effective policy varies

between 15.1% and 72.6% of the currently implemented rebate scheme (excluding the cases

with a corner solution or very close to a corner solution) and the estimated marginal cost of
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abatement is between $290 and $876. Understanding the cost-effectiveness of environmental

policies is crucial. With limited resources, policymakers need to choose where to allocate

public funds to maximize the impact of their interventions on environmental outcomes.

7 Conclusion

The Canadian electric car market presents a unique opportunity to study the cost-effectiveness

of subsidizing electric vehicle sales. Evaluating the environmental performance of such poli-

cies is important. With limited financial resources, policymakers should strive to reduce

emissions at the lowest cost possible.

My findings suggest that electric vehicle subsidies are an effective way to diffuse the

technology and increase adoption. I find no evidence that these additional sales generate

additional charging station installations in the short-run. In the long-run, I find that the

program led to a small increase in network provision. This study provides a rigorous cost-

benefit analysis to evaluate the cost-effectiveness of rebate programs. I find in general that

the marginal cost of abatement remains high compared to traditional measures of the social

cost of carbon. This suggests that the provincial and federal governments in Canada over-

invest on electric vehicle subsidies compared to what is efficient.

These results should be considered as part of a broader set of environmental policies. For

example, investments into cleaner electricity production, reforestation, or the modernization

of particularly polluting industries could abate emissions at a lower marginal cost. This study

contributes to creating a unified framework to study and compare environmental policies and

help policymakers make these crucial decisions.
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A Additional Tables and Figures

Table A.1: County-level demographics

Ontario Quebec

Pre Post1 Post2 Pre Post1 Post2

Avg. household income 96,484 100,837 114,341 74,594 79,322 90,373
(15,509) (15,337) (15,866) (11,134) (10,625) (11,074)

Avg. after-tax household income 80,070 82,742 93,967 61,805 65,007 73,869
(11,229) (10,810) (11,105) (8,128) (7,658) (7,921)

Unemployment rate 0.081 0.074 0.12 0.073 0.073 0.075
(0.012) (0.010) (0.018) (0.023) (0.022) (0.020)

Avg. household size 2.65 2.63 2.62 2.33 2.32 2.28
(0.28) (0.29) (0.28) (0.16) (0.16) (0.16)

Avg. age 40.6 41.0 41.8 42.0 42.0 42.8
(2.66) (2.02) (2.03) (3.22) (2.41) (2.65)

Share of graduates 0.25 0.32 0.36 0.20 0.25 0.29
(0.10) (0.11) (0.12) (0.09) (0.11) (0.12)

Share of conservatives 0.42 0.35 0.33 0.17 0.16 0.16
(0.10) (0.08) (0.08) (0.10) (0.11) (0.11)

Work location < 30 min drive – 0.57 0.61 – 0.61 0.66
(0.14) (0.11) (0.14) (0.11)

Work location within county of residence – 0.74 0.76 – 0.67 0.69
(0.15) (0.12) (0.24) (0.21)

Median commuting time 23.4 – – 22.1 – –
(6.64) (6.57)

Share of homeowners 0.72 0.70 0.69 0.62 0.62 0.60
(0.11) (0.11) (0.10) (0.15) (0.14) 0.14

Share of visible minority 0.27 0.29 0.34 0.12 0.13 0.16
(0.21) (0.21) (0.22) (0.12) (0.13) (0.15)

Population, in million 13.07 13.45 14.22 7.95 8.11 8.44
Nb. of counties 49 49 49 98 96 96

NOTE: All values are averaged over counties, weighted by population. Standard deviation in parenthesis.
Pre is based on the 2011 Canadian Census Survey. Post1 is based on the the 2016 Canadian Census Survey.
Post2 is based on the 2021 Canadian Census Survey. Income variables are not adjusted for inflation.
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Table A.2: Robustness to distance threshold

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
No instr. 0 km 50 km 100 km 150 km 200 km 250 km 300 km 350 km 400 km 450 km 500 km

Net price -0.668 -0.682 -0.682 -0.681 -0.681 -0.681 -0.682 -0.683 -0.683 -0.684 -0.685 -0.684
(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031)

Net price × Income 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Log network 0.245 0.430 0.422 0.401 0.383 0.379 0.402 0.416 0.414 0.417 0.414 0.398
(0.026) (0.034) (0.033) (0.034) (0.035) (0.036) (0.037) (0.037) (0.037) (0.037) (0.038) (0.038)

Log network × Income 0.125 0.193 0.188 0.194 0.199 0.200 0.206 0.214 0.211 0.209 0.210 0.215
(0.030) (0.042) (0.045) (0.046) (0.049) (0.049) (0.049) (0.048) (0.047) (0.048) (0.049) (0.050)

Log network × Age -0.033 -0.155 -0.150 -0.143 -0.137 -0.138 -0.149 -0.158 -0.157 -0.157 -0.158 -0.152
(0.043) (0.045) (0.044) (0.044) (0.044) (0.044) (0.044) (0.045) (0.045) (0.045) (0.044) (0.044)

Observations 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397
R-squared 0.118 0.110 0.110 0.110 0.110 0.110 0.109 0.109 0.109 0.109 0.108 0.109

NOTE: This table highlights how the coefficients on Log network change as I increase the distance threshold which is used to construct the
network instrument zN. The model is estimated with an IV logit specification (i.e. without the random coefficients). Distance thresholds are
in km from centroid to centroid for each region pair. Column (1) does not instrument for the network, hence excludes zN and Log network is
taken as exogenous. Column (2) uses all stations that are located outside of a given county without filtering for distance. Column (8) is the
chosen specification. All regressions include car characteristics and their interaction with county-level average demographics. All regressions
include brand, market segment, county, and year fixed effects. All regression include the set of instruments described in Section 4.3. Standard
error in parenthesis are clustered at the product × county level.
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Table A.3: Endogeneity and network supply

With internalization No internalization

(1) (2) (3)
Static model Control function No control function

λN 1.793 1.823 1.820
(0.049) (0.049) (0.049)

λQ 0.313 0.385 0.494
(0.054) (0.096) (0.052)

Avg. Income -0.579 -0.594 -0.599
(0.069) (0.071) (0.071)

Avg. age 1.748 1.818 1.915
(0.253) (0.254) (0.25)

Avg. household size 0.822 0.790 0.779
(0.659) (0.668) (0.659)

Share graduates 9.723 9.491 8.742
(1.031) (1.149) (1.06)

Share homeowner -3.438 -3.200 -2.810
(0.886) (-3.2) (0.86)

Urban 0.494 0.427 0.312
(0.136) (0.164) (0.136)

Control function 0.150
(0.111)

Observations 830 830 830
Likelihood -2.602 -2.564 -2.565

NOTE: This table compares alternative methods for dealing with the simultaneity and
the endogeneity issues in the network supply model. Column (1) reports the estimates
from the static version of the model presented in Section 4. Column (2) reports the
estimates from a static model that does not internalize the demand response in electric
vehicle sales from additional stations. The endogeneity issue is tackled using a control
function approach. The set of instrumental variables includes the county-level demo-
graphics, as well as the gas station density (number of gas stations per 5,000 inhabitant),
a fuel price index, and an interaction between the two. The identifying assumptions are
that competition in the fuel market affects electric vehicle sales through substitution
between fuel and electric and that network operators and refueling stations do not com-
pete with each other once sales are realized. Column (3) reports estimates for the same
model as in (2), without the control function approach such that the endogeneity issue is
not addressed. Robust standard errors in parenthesis are computed using 500 bootstrap
replications.
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Table A.4: Average characteristics, by engine type

Fuel Battery Plug-in Hybrid
electric hybrid

Characteristics
List price, in CAD 36,780 54,531 42,830 36,844
Net price, in CAD 36,780 44,695 35,834 36,480
Rebate, in CAD 0 9,836 6,996 364
Power, in kW 149.6 168.9 154.9 163.5
Length, in m 4.55 4.41 4.63 4.65
Width, in m 1.83 1.85 1.82 1.83
Height, in m 1.57 1.52 1.51 1.58
Weight, in 100kg 15.8 16.9 16.9 16.0
Driving Range, in km 661 349 809 873
Fuel consumption, in L/100km 8.85 0 5.94 5.89
Electricity consumption, in kWh/100km 0 16.1 24.8 0
Cost of driving 100km 11.40 1.74 6.79 7.35
CO2 emissions, in g/km 205.6 0 60.1 137.5

Transmission
Manual 0.10 0 0 0
Automatic/Single-speed 0.90 1 1 1

Fuel type
Regular 0.82 0 0.88 1
Premium 0.15 0 0.12 0
Diesel 0.03 0 0 0

Market segment
Subcompact 0.11 0.19 0.02 0
Compact 0.33 0.59 0.66 0.11
Midsize 0.05 0 0.09 0.19
Luxury/Executive 0.02 0.03 0 0
Crossover Utility (CUV) 0.18 0.18 0.06 0.64
Sport Utility (SUV) 0.27 0.01 0.15 0.05
Minivan 0.03 0 0.02 0

NOTE: All averages are weighted by sales. All dollars values are in 2018 CAD.
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Table A.5: Alternative demand specification

Demographic interactions

Estimate Income Age Gender Pop. density Trend σ

Price – Rebate -0.808 0.026 -0.144
(0.036) (0.005) (0.022)

vj(N, θi) -0.007 0.118 -0.158 -0.505
(0.597) (0.085) (0.076) (0.475)

Power 0.953 0.182 0.041
(0.022) (0.023) (0.004)

Weight 0.225 0.084
(0.034) (0.004)

Driving cost -0.034 0.366
(0.004)

Battery electric -2.054 -0.489 0.179 -0.766
(0.206) (0.198) (0.032) (0.405)

Plug-in hybrid -2.033 -0.564 0.153 -0.852
(0.189) (0.195) (0.034) (0.447)

Hybrid -1.715 0.366 0.145
(0.022) (0.045) (0.015)

Constant 4.650
(2.91)

Observations 126,397
Nb. of markets 864

NOTE: Alternative demand specification with a random coefficient on θ. Including this
additional random coefficient loses identification of all the parameters of the indirect
utility function v(N, θi). Includes brand, market segment, county, and year fixed effects.
Robust standard errors in parenthesis.
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Figure A.1: Event-study, log of sales
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NOTE: All regressions include county-level demographics and are weighted by popula-
tion. Standard errors are clustered at the county level.
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Figure A.2: Event-study, log of network size (stock)
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NOTE: All regressions include county-level demographics and are weighted by popula-
tion. Standard errors are clustered at the county level.
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Figure A.3: Event-study, log of network size (flow)
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NOTE: All regressions include county-level demographics and are weighted by popula-
tion. Standard errors are clustered at the county level.
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Figure A.4: Event-study, network characteristics (stock)
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NOTE: All regressions include county-level demographics and are weighted by popula-
tion. Standard errors are clustered at the county level.
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Figure A.5: Event-study, network characteristics (flow)
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NOTE: All regressions include county-level demographics and are weighted by popula-
tion. Standard errors are clustered at the county level.
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B Details on the Data

I use data from several sources, described below. The data is aggregated at the county

level, following Statistics Canada’s Census Divisions. Markets are defined as county-year

combinations. I choose this level of aggregation for two reasons. First, counties capture

relatively well the day-to-day commuting area of car owners: about 72% of them work

within their county of residence. Also, county-level governments are the largest contributors

to charging networks, which reinforces the idea that network provision is decided at the level

of the county.

Car registration. The data on car registration comes from two main sources: the Ministry

of Transportation of Ontario (MTO) and the Société d’Assurance Automobile du Québec

(SAAQ). The Ontario dataset includes quarterly car registrations aggregated at the product-

county level for the years 2011-2021. The data includes the make (i.e. Ford), the model (i.e.

Focus), and the engine type (i.e. Electric), and the quantity sold.

The Quebec dataset comprises 10 yearly datasets that detail the full fleet of vehicles in

circulation at the end of each year, from 2011 to 2020. The data includes the make, the

model, the model year, some demographics of the owner (age, gender, county of residence),

as well as additional vehicle characteristics (colour, number of cylinders, cylinder capacity,

and curb weight). The engine type is available from the 2017 dataset onwards. I impute the

engine type in the 2011-2016 datasets using the information available in the 2017 dataset.

Since battery pack are relatively heavy, I find that the make, the model, the model year,

and the curb weight of the vehicles allow me to identify battery electric, plug in hybrids,

and hybrids reliably. In some cutting edge cases, I also leverage information in the other

variables (number of cylinder, cylinder capacity, and the consumer demographics) to assign

an engine type to all vehicles. Vehicles with a model year prior to 2011 are assumed to be

internal combustion engines.

I use the following algorithm to reconstruct sales in Quebec in each year between 2012

and 2020.

1. Take dataset t;

2. Keep model years that could have been sold as new in year t (i.e. t− 1, t, t+ 1);

3. Remove vehicles that also appear in dataset t− 1, by comparing the make, the model,

the model year, the colour of the vehicle, the age of the owner, the gender of the owner,

and the county of residence of the owner;

4. Repeat for dataset t+ 1.
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Since vehicles could have been resold in the first year of ownership, or owners could have

moved to a different county, I risk overestimating sales. After a careful verification against

governmental statistics, I find that this is not a serious issue.

Car characteristics. The car characteristics were scrapped from The Car Guide26 which

publishes on their website comprehensive information on all makes and models available in

Canada. This website has been one of the go-to reference for information about the different

car makes since the mid-90s and has widespread public recognition in Canada. The car

characteristics dataset includes retail prices and various characteristics such as the engine

type, horsepower, size, fuel consumption and carbon emissions, all recorded at the brand-

model-year-specification level (i.e. Ford Focus 2017 S-Sedan). The data has a non-negligible

number of missing values in key variables. Specifications with a missing price or a missing

curb weight are removed entirely.27 Missing values in other variables are filled in using the

data from other specification that share the same make-model-year. If an information is

missing for all specifications for a make-model-year combination, I use information from

other vehicles with the same make-model but a different model year. Remaining missing

values are imputed using data collected on the Auto Trader’s website.28

Product definition. I define a product to be a combination between the make, the model,

and the engine type. The final dataset is aggregated at the product-county-year level. The

car characteristics dataset is at a more disaggregated level than the registration data. I select

the characteristics of the most sold specification over all sales to define product attributes.

To find this most popular specification, I first recover the exact specification for each entry in

the registration data by matching on the make, the model, the engine type, and then picking

the specification with the closest curb weight.29 I then aggregate the data over counties and

keep the specification with the most sales. Once the specification is chosen, I assign these

characteristics to all products.

To avoid the proliferation of products in the structural estimation, I remove all products

with fewer than 1000 sales over all counties and years (100 sales for battery electric and plug-

in hybrid vehicles). I also remove exotic makes, and all vehicles with a retail price above

$150,000. Finally, I remove pick-up trucks which are poor substitutes to electric vehicles and

are not relevant to this study.

26See https://www.guideautoweb.com/en/.
27Curb weight is particularly important in this context since I use it to match the make-model-year

registration data to the make-model-year-specification characteristics data.
28See https://www.autotrader.ca.
29In case two specifications have the same weight in the characteristics data, I keep the specification that

is closest to the base model.
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Other data sources. I complement these datasets with data from various other sources.

The data on charging stations comes from Natural Resources Canada and Hydro-Quebec.

They contain the exact geographical location of each station, the entry date, the operator’s

name, pricing, and relevant physical attributes such as the type of station, the number of

chargers, and whether a station is publicly or privately owned. I obtain detailed data on

government expenditure on rebates, which include the exact rebate that was given to each

model in each year. Consumer demographics are taken from the Canadian Census Survey,

the Institut de la Statistique du Québec, and Election Canada. Information on gas prices

and gas stations are obtained from the Régie de l’Énergie.

C Continuous treatment effect

I study the effect of rebates at the intensive margin using a continuous treatment effect spec-

ification. This allows me to identify the underlying market elasticity of demand for electric

vehicles using a similar approach to Muehlegger and Rapson (2022). I start by constructing

a continuous measure of the treatment variable, τmt, the average rebate received in county

m and year t. I then estimate the following continuous treatment effect specification,

ymt = ατmt +Dmtγ + µm + λt + ϵmt,

where µm and λt are fixed effects, and Dmt is a vector of county-level demographics as

previously. The dependent variable is the log of electric vehicle registrations by county and

year. The parameter of interest is α, the semi-elasticity to the rebate. I can recover the

market elasticity of demand as

ε = −α
ψ
·E(p)

for any combination of passthrough ψ and expected price E(p).

The average rebate is constructed by aggregating over individual-level rebates within a

county and year. Therefore, it depends on the composition of the underlying fleet of electric

vehicles and is endogenous by construction. If the proportion of plug-in hybrids is higher

in a given county, the average rebate would decrease mechanically as plug-in hybrids are

usually not eligible for the same subsidy as battery electric vehicles. Endogeneity arises if

unobserved shocks to consumer preferences shift both the total quantity of electric vehicles

sold and the proportion of battery electrics to plug-in hybrids.

I propose two different instrumental variables to address this issue. First, I consider

using the discrete version of the treatment variables as instruments. These instruments

are naturally highly correlated to the average rebate. The exclusion restriction would be
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Table C.1: Continuous treatment effect

OLS IV

(1) (2) (3)

Avg. Rebate 0.067*** 0.076*** 0.077***
(0.005) (0.005) (0.005)

First stage

Post 1 × Ontario 5.541***
(0.122)

Post 2 × Ontario -6.640***
(0.143)

Avg. rebate in other counties 1.015***
(0.010)

Observations 1,232 1,232 1,232

NOTE: The dependent variable is the log of electric vehicle sales.
Avg. rebate is in thousand 2018 CAD. All regressions include county-
level demographics, county and year fixed effects, and are weighted
by population. Standard error in parenthesis are clustered at the
county level. Significance: * < 0.10, ** < 0.05, *** < 0.01.

satisfied if the timing of the policy changes in Ontario were uncorrelated with local shocks.

This assumption is difficult to test in practice. I construct a second instrument in the spirit

of Hausman (1996) and Nevo (2001). The idea is to use the cross-sectional variation in the

data to construct a valid instrument for the average rebate. In this context, this means using

the average rebate in other counties within a province. The instrument’s validity rests on

the assumption that the proportion of battery electrics to plug-in hybrids in other counties is

uncorrelated with local preference shocks. This assumption would be violated if preference

shocks not accounted for by fixed effects affected the ratio of battery electrics to plug-in

hybrids in many counties simultaneously.

Results are presented in Table C.1. Both sets of instruments yield a very similar result:

a $1,000 increase in rebates is associated with a 7.7% increase in sales of electric vehicles.

I cannot identify passthrough directly using this setup. Instead, I provide bounds for the

implied elasticity of demand using different values of passthrough and the average net price

of electric vehicles. Results are presented in Table C.2. My results are comparable to

Muehlegger and Rapson (2022). They estimate an own-price elasticities of -2.1. I estimate

an own-price elasticity of -3.132 using the same methodology and a passthrough of 100%.

The difference between the two estimates arises from the fact that I am using list prices,

whereas they have access to transaction prices which are typically lower after bargaining.

My results are close to other works that focus on a structural estimation. Xing et al.
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Table C.2: Implied elasticity of demand

Rebate Passthrough (ψ)

100% 90% 75% 50% 25%

Implied elasticity (ε) -3.132*** -3.480*** -4.176*** -6.264*** -12.528***
(0.196) (0.218) (0.392) (0.392) (0.784)

E(p) 40.711

α̂ 0.077

NOTE: E(p) is in the average net price, in thousand 2018 CAD. Standard errors are
computed using the Delta method and are clustered at the county level. Significance:
* < 0.10, ** < 0.05, *** < 0.01.

(2021), Remmy (2022), and Li (2023) find an average own-price elasticity of -2.75, -3.54, and

-3.70 respectively. Springel (2021) on the other hand finds an own-price elasticity between

-1.49 and 1.07. Pavan (2017) estimate the own-price elasticity of alternative fuel vehicles to

be between -4.42 and -2.85.

D Proofs

I prove formally the statements in equations (6) and (12) using Lemma 1 an 2 below. In

what follows, I omit the subscript m and the superscript ev to avoid cluttering the notation,

such that qt(·) and Qt(·) represent the flow and the stock of electric vehicles in period t for

a given county.

Assumptions. I impose the following three assumptions on the local planner’s expecta-

tions, which are sufficient conditions for Lemma 1:

A1. 0 ≤ EtFt+k − ρEtFt+k+1 ≤ K(ρ), ∀k ≥ 1;

A2. Etqt+k(n) = (1 + gt)
kqt(n), ∀n ∈ N, ∀k ≥ 1;

A3. qt(n) > qt(n− 1), ∀n ∈ N.

Assumption A1 imposes some restrictions on the local planner’s expectations about the

evolution of the installation costs. The fixed cost of installation could go up if the technology

improves over time (i.e. faster, more powerful chargers become available), or decrease with

economies of scale or increased competition. For reasonable values of ρ, assumption A1

imposes bounds on the evolution of the expected fixed costs of installation. They can increase

over time, at a rate no larger than (1 − ρ)/ρ, or decrease at a rate defined by the constant
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K(ρ) which I define below. Assumption A2 states that the local planner’s expectation about

future sales is the same as current sales multiplied by some exogenous growth rate gt. In some

sense, the local planner is uncertain about future advances in electric vehicle technology, the

expansion of the choice set, and consumers evolving preferences. In this context, his best

guess about future sales is based on the current market conditions. Assumption A3 holds

trivially by strict monotonicity of consumer preferences, as long as θi > 0,∀i.

LEMMA 1. Let A1 – A3 hold, and ρ ∈ [0, 1). Then

max
k≥1

{
ρkEtVt+k(n, It+k)

}
= ρEtVt+1(n, It+1).

Proof. First, notice that Lemma 1 holds trivially for ρ = 0. For ρ ∈ (0, 1), it is sufficient to

show that

ρEtVt+1(n, It+1)− ρkEtVt+k(n, It+k) ≥ 0, ∀k > 1,

or

ρEtV t+1(n, It+1)− ρkEtV t+k(n, It+k) ≥ ρEtFt+1 − ρkEtFt+k, ∀k > 1. (15)

By Assumption A1, we can rewrite the right-hand side of (15) as

ρEtFt+1 − ρkEtFt+k =
k−1∑
s=1

ρs (EtFt+s − ρEtFt+s+1) ≤ akK(ρ),

where the constant ak is equal to
ρ−ρk

1−ρ
. I now prove the Lemma by finding a value K(ρ) such

that

ρEtV t+1(n, It+1)− ρkEtV t+k(n, It+k) ≥ akK(ρ) ≥ 0, ∀k > 1. (16)

The first term in the left-hand side of equation (16) can be rewritten as

ρEtV t+1(n, It+1) =
t+k−1∑
s=t+1

ρs−t
EtQs(n, It+1)∆v(n)

γ +
∞∑

s=t+k

ρs−t
EtQs(n, It+1)∆v(n)

γ,

where I have made explicit the dependence of the stock of electric vehicles on the installation
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date of station n. The second term in the left-hand size of equation (16) can be rewritten as

ρkEtV t+k(n, It+k) =
∞∑

s=t+k

ρs−t
EtQs(n, It+k)∆v(n)

γ.

The installed base of electric vehicle in both equations accumulate differently between period
t + 1 and t + k − 1, since station n is installed in period t + 1 in the first case and in t + k
in the second case. That is, we have that

EtQs(n, It+1) = (1− d)s−tQt(n− 1) +

t+k−1∑
τ=t+1

(1− d)s−τ
Etqτ (n) +

s∑
τ=t+k

(1− d)s−τ
Etqτ (n)

= (1− d)s−tQt(n− 1) +

t+k−1∑
τ=t+1

(1− d)s−τ (1 + gt)
τ−tqτ (n) +

s∑
τ=t+k

(1− d)s−τ (1 + gt)
τ−tqτ (n),

EtQs(n, It+k) = (1− d)s−tQt(n− 1) +

t+k−1∑
τ=t+1

(1− d)s−τ
Etqτ (n− 1) +

s∑
τ=t+k

(1− d)s−τ
Etqτ (n)

= (1− d)s−tQt(n− 1) +

t+k−1∑
τ=t+1

(1− d)s−τ (1 + g)τ−tqτ (n− 1) +

s∑
τ=t+k

(1− d)s−τ (1 + g)τ−tqτ (n).

where the second equality in each equation holds by Assumption A2. Combining these

results, equation (16) can be rewritten as

ρEtV t+1(n, It+1)− ρkEtV t+k(n, It+k) =
t+k−1∑
s=t+1

ρs−t
EtQs(n, It+1)∆v(n)

γ (17)

+
∞∑

s=t+k

ρs−t
(
EtQs(n, It+1)−EtQs(n, It+k)

)
∆v(n)γ . (18)

Notice that the term in the right-hand side of (17) is greater or equal to zero since both

EtQs(It+1) ≥ 0 and ∆v(n)γ ≥ 0 by construction. The terms inside the sum in equation (18)

can be rewritten as

EtQs(n, It+1)−EtQs(n, It+k) =

t+k−1∑
τ=t+1

(1− d)s−τ (1 + gt)
τ−t
(
qt(n)− qt(n− 1)

)
> 0,

since qt(n) > qt(n− 1) by Assumption A3. Combining these results, we have that

ρEtV t+1(n, It+1)− ρkEtV t+k(n, It+k) > 0, ∀k > 1,
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and we can choose K(ρ) such that

K(ρ) = min
k>1

{
ρEtV t+1(n, It+1)− ρkEtV t+k(n, It+k)

ak

}
which completes the proof.30

LEMMA 2. Let ρ ∈ [0, 1) and define ρ̃ = ρ (1− d). Then

ρEtV t+1(n, It)− ρEtV t+1(n, It+1) =
ρ̃

1− ρ̃
∆v(n)γ

(
qt(n)− qt(n− 1)

)
,

Proof. First, notice that Lemma 2 holds trivially for ρ = 0. For ρ ∈ (0, 1), we have that

ρEtV t+1(n, It)− ρEtV t+1(n, It+1) =
∞∑

s=t+1

ρs−t (EtQs(n, It)−EtQs(n, It+1))∆v(n)
γ,

where

EtQs(n, It) = (1− d)s−t+1Qt−1 + (1− d)s−tqt(n) +
s∑

τ=t+1

(1− d)s−τ
Etqτ (n),

and

EtQs(n, It+1) = (1− d)s−t+1Qt−1 + (1− d)s−tqt(n− 1) +
s∑

τ=t+1

(1− d)s−τ
Etqτ (n).

Combining both equation, we have that

EtQs(n, It)−EtQs(n, It+1) = (1− d)s−t
(
qt(n)− qt(n− 1)

)
, ∀s > t.

Therefore,

ρEtVt+1(n, It)− ρEtVt+1(n, It+1) =
∞∑

s=t+1

ρs−t(1− d)s−t
(
qt(n)− qt(n− 1)

)
∆v(n)γ

=
∞∑

s=t+1

ρ̃ s−t
(
qt(n)− qt(n− 1)

)
∆v(n)γ

=
ρ̃

1− ρ̃
∆v(n)γ

(
qt(n)− qt(n− 1)

)
30Notice than in the limit, we have K(0) = EtV t+1(n, It+1) ≥ 0.
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E Computational Details

E.1 Indirect utility of charging

I discuss a general functional form for the indirect utility of charging v(N, θ). In what follows,

I assume all consumers have the same indirect utility of charging to simplify the notation

(i.e. θi = θ). It is straightforward to reintroduce heterogeneity if needed. I consider a variant

of the isoelastic (or constant relative risk aversion) utility specification, that is,

v(N, θ) = θ1
(1 + θ2N)1−θ3 − 1

1− θ3
, (19)

with θ1 ≥ 0, θ2 ≥ 0, and θ3 ≥ 0, θ3 ̸= 1. As before, the “1” in (1 + θ2N) means to represent

the potential for home charging, and the “N” represents the opportunity to charge on the

network.

The isoelastic utility function satisfies all of the key assumptions of the model, that is,

v(N, θ) ≥ 0, ∂v(N,θ)
∂N

≥ 0, and ∂2v(N,θ)
∂N2 ≤ 0 for all N ∈ N. It also encompasses as special cases

several useful parameterizations: (1) logarithmic (θ1 > 0, θ2 > 0, θ3 → 1), (2) linear (θ1 > 0,

θ2 > 0, θ3 = 0), and (3) constant utility (θ2 = 0, θ3 = 0) to name a few. The parametrization

used in the analysis occurs as a special case with θ1 = θi, θ2 = 1, and θ3 → 1.

Each parameter has a clear economic interpretation. This indicates which type of varia-

tion may be required for identification. I describe each parameter in turn. The parameter θ1

controls the value consumer i attaches to home-charging. To see this, consider the simplified

linear utility model

v(N, θ) = θ1(1 + θ2N).

which is a special case of (19). Consider the case where charging on the network is impossible.

For example, this would occur if a consumer lives in a region without a network. His indirect

utility becomes v(0, θ) = θ1, which he derives from home-charging only.

The parameter θ2 controls the value consumer i attaches to charging on the network in

proportion to home-charging. For 0 < θ2 < 1, consumer i prefers to charge at home to

charging on the network. The reverse is true for θ2 > 1. For example, we could think that

heavy commuters rely on charging on the network more than at home, hence have a higher

utility from charging on the network than at home.

Finally, θ3 captures congestion effects and imposes decreasing returns on the indirect

utility function. Here the term congestion does not refer to the usage of each station, but
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rather to the limited availability of potential charging station installation sites. As more and

more stations are installed, good sites become saturated and the local planners are forced

to consider lower-value sites for future stations. Hence consumers benefit less and less from

additional stations.

Unfortunately, I do not have the required variation to identify more than one parameter.

Data on commuting or charging patterns, from origin-destination surveys for example, could

be helpful in identifying θ2 at the consumer-level. This would require the survey to also

indicate if the participants drive an electric vehicle or not. Identifying θ3 would require

data that informs me about these aforementioned congestion effects. For example, data that

inform me about the quantity and the quality of potential charging sites would be helpful.

E.2 Details on the demand estimation

The estimation of the demand side parameters follows the best practices described in Conlon

and Gortmaker (2020). I include two random coefficients to capture consumers heterogene-

ity. The random coefficient on prices captures differences in price sensitivity, while the

random coefficients on the constant controls for the substitution between the inside good

and the outside good. I find that these are important to make sure I do not overestimate

the environmental gains due to rebate programs.

Estimation is done in two-stages using the Nested Fixed Point algorithm. I set a tight

tolerance threshold on the objective function of 1e-5 as suggested in Conlon and Gort-

maker (2020). I partial out the linear parameters and focus the estimation on the random

coefficients. Fixed effect are differentiated out using Frisch-Waugh-Lovell Theorem. The

integration of the market shares is performed using 1,000 independent Halton draws. Fi-

nally, I perform the inversion of the market shares using the squarem algorithm31 and a tight

convergence threshold of 1e-12. Reynaert and Verboven (2014) and Conlon and Gortmaker

(2020) both show that the squarem algorithm is significantly faster than the contraction

mapping described in Berry et al. (1995).

I do not use the optimal instruments described in Reynaert and Verboven (2014) and

Conlon and Gortmaker (2020). I find that they did not work well in this particular applica-

tion. Since network size is determined jointly with electric vehicle sales, it is not clear how

to deal with the endogenous network size while computing the optimal instruments since it

is a stock variable. I also do not include a supply side for cars. As pointed out by Conlon

and Gortmaker (2020), including a supply side helps identifying the random coefficients,

but can lead to misleading results in case it is misspecified. List prices for cars are set at

31See Varadhan and Roland (2008).
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the Canadian level, hence assuming that manufacturers change prices in response to a local

policy would lead to one such misspecification. I instead assume that prices do not respond

to the policy, although they are still endogenous since they are correlated to unobserved car

attributes.

E.3 Details on the network supply estimation

My preferred specification for the indirect utility for charging v(N, θi) allows for some sim-

plifications of the network supply problem. Recall that

v(N, θi) = θi ln(1 +N),

and

∆v(N) =

∫
v(N, θi)− v(N − 1, θi)

−βp
i

dF (νi).

The logarithm can be taken outside the integral in ∆v(N) as it does not depend on i. I

rewrite

∆v(N) =
(
ln(1 +N)− ln(N)

)
·
∫

θi
−βp

i

dF (νi),

= γmt ln

(
1 +

1

N

)
,

where

γ̄mt = −
∫

θ +DmtΓ
N + σNνNi

βp +DmtΓp + σpνpi
dF (νi) > 0.

The network supply model is not estimated jointly with demand. Instead, I use the

estimated parameters from the demand side to compute γmt prior to estimating the network

supply model. I now rewrite the estimating equation and the other structural functions in

terms of the specific functional form for ∆v(N).

Conditional log-likelihood. The conditional log-likelihood becomes:

ℓ(λ | Qev
m,t−1Dmt)

=
∑
m

∑
t

ln

[
Φ

(
λN ln

(
γmt ln

(
1 +

1

Nmt

))
+ λQ ln

(
Qev

mt(Nmt) +
ρ̃

1− ρ̃
∆qevmt(Nmt)

)
+Dmtλ

D

)

− Φ

(
λN ln

(
γmt ln

(
1 +

1

Nmt + 1

))
+ λQ ln

(
Qev

mt(Nmt + 1) +
ρ̃

1− ρ̃
∆qevmt(Nmt + 1)

)
+Dmtλ

D

)]
.
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Network supply. The supply function becomes:

Nmt =

Smt−1∑
n=1

n · 1
{
λN ln

(
γmt ln

(
1 +

1

n

))
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D > ϵnmt

≥ λN ln
(
γmt ln

(
1 +

1

n+ 1

))
+ λQ ln

(
Qev

mt(n+ 1) +
ρ̃

1− ρ̃
∆qevmt(n+ 1)

)
+Dmtλ

D

}

+Smt · 1
{
λN ln

(
γmt ln

(
1 +

1

Smt

))
+ λQ ln

(
Qev

mt(Smt) +
ρ̃

1− ρ̃
∆qevmt(Smt)

)
+Dmtλ

D > ϵnmt

}
.

Conditional expectation. The conditional expectation becomes:

Eϵn(Nmt | Qev
m,t−1,Dmt) =

Smt∑
n=1

Φ

(
λN ln

(
γmt ln

(
1 +

1

n

))
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D

)
.

Marginal effect. Finally, the marginal effect becomes:

∂Nmt

∂Qev
mt

=

Smt∑
n=1

ϕ

(
λN ln

(
γmt ln

(
1 +

1

n

))
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D

)
· λQ

Qev
mt(n) +

ρ̃
1−ρ̃ ∆q

ev
mt(n)

.

The general derivation of the marginal effect follows in the next section.

E.4 Elasticities

Elasticity of network supply and marginal effect. I first derive an expression for the

elasticity of network supply,

ηmt =
∂Nmt

∂Qev
mt

· Q
ev
mt

Nmt

.

The supply equation is a step function, hence its derivative ∂Nmt

∂Qev
mt

is either zero or it is

not differentiable. Following Blundell and Powell (2004), rewrite network supply as Nmt =

N(Qev
m,t−1, ϵ

n
mt) to make the dependence on Qev

m,t−1 and ϵ
n
mt explicit, and consider the average

structural function,

Eϵn(Nmt | Qev
m,t−1) =

∫
N(Qev

m,t−1, ϵ
n) dF (ϵn).

I can show that for ϵnmt distributed as standard normal, the average structural function can

be written as

Eϵn(Nmt | Qev
m,t−1) =

Smt∑
n=1

Φ

(
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

))
.
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The partial effect can be recovered as the derivative of the average structural function, that

is,

∂Nmt

∂Qev
mt

=

Smt∑
n=1

ϕ

(
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

))
· λQ

Qev
mt(n) +

ρ̃
1−ρ̃ ∆q

ev
mt(n)

.

where Φ(·) and ϕ(·) represent the cummulative and probability distribution functions of the

standard normal distribution.

Elasticity of demand. The elasticity to price can be computed using chain rule. We have

that

εj,kmt =
∂sjmt(pt, Nmt)

∂pkt
· (pkt − τkt)

sjmt

,

where

∂sjmt(pt, Nmt)

∂pkt
=
∂sjmt

∂pkt
+
∂sjmt

∂Nmt

· ∂Nmt

∂Qev
mt

· ∂Q
ev
mt

∂pkt
. (20)

It can be shown that the terms in (20) are

∂sjmt

∂pkt
=


∫
βpi sijmt (1− sijmt) dF (νi) if j = k

−
∫
βpi sijmt sikmt dF (νi) if j ̸= k

,

∂sjmt

∂Nmt
=


∫

θi
1+Nmt

sijmt
∑

ℓ∈EV siℓmt dF (νi) if j ∈ EV

−
∫

θi
1+Nmt

∑
ℓ∈EV siℓmt dF (νi) if j /∈ EV

,

∂Nmt

∂Qev
mt

=

Smt∑
n=1

ϕ

(
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D

)
· λQ

Qev
mt(n) +

ρ̃
1−ρ̃ ∆q

ev
mt(n)

,

∂Qev
mt

∂pkt
=

Lmt ·
∑

ℓ∈EV
∂sℓmt
∂pkt

1− Lmt · ∂Nmt
∂Qev

mt
·
∑

ℓ∈EV
∂sℓmt
∂Nmt

.

where Lmt is the market potential.

Demand elasticities are useful to assess the quality of the estimation. Figure A.6 depicts

the distribution of own price elasticities. The average is -3.29, which is comparable to other

studies on the car market. Previous works find that the cross-price elasticities between elec-

tric vehicles are negative, suggesting that these products become complements once I account

67



for network effects. I find the opposite: all cross-price elasticities are positive, meaning that

electric vehicles remain substitutes when I account for network effects. This follows from

the fact that the marginal effects are very small on the network supply side, leading to weak

network effects. Mechanically, the term ∂Nmt

∂Qev
mt

is not large enough in magnitude to change the

sign of the cross-elasticity εj,kmt for electric vehicle pairs. Table C.3 reports the full elasticity

matrix for selected battery electric and plug-in hybrid vehicles, in 2018.

Figure A.6: Distribution of own-price elasticities
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Table C.3: Average elasticities of electric vehicles, in 2018

Bolt EV Volt Pacifica C-Max Fusion Soul EV Outlander Leaf Model 3 e-Golf

Panel A: Forward-looking Network Supply

Chevrolet Bolt EV -2.904 0.00602 0.00100 0.000246 0.00186 0.00100 0.00573 0.00643 0.00775 0.00157
Chevrolet Volt 0.00393 -2.525 0.000999 0.000259 0.00184 0.00104 0.00571 0.00653 0.00766 0.00162
Chrysler Pacifica 0.00364 0.00533 -3.740 0.000211 0.00184 0.000948 0.00602 0.00627 0.00871 0.00148
Ford C-Max 0.00404 0.00607 0.00108 -2.153 0.00204 0.00116 0.00625 0.00680 0.00877 0.00179
Ford Fusion 0.00383 0.00586 0.00100 0.000240 -3.227 0.000981 0.00575 0.00630 0.00790 0.00151
Kia Soul EV 0.00397 0.00637 0.00101 0.000262 0.00197 -2.311 0.00590 0.00700 0.00809 0.00170
Mitsubishi Outlander 0.00368 0.00560 0.00100 0.000229 0.00176 0.000948 -3.530 0.00608 0.00787 0.00146
Nissan Leaf 0.00398 0.00615 0.000992 0.000252 0.00183 0.00104 0.00586 -2.752 0.00782 0.00160
Tesla Model 3 0.00373 0.00554 0.00103 0.000207 0.00181 0.000941 0.00599 0.00604 -4.154 0.00139
Volkswagen e-Golf 0.00418 0.00658 0.00102 0.000272 0.00197 0.00112 0.00612 0.00701 0.00798 -2.333

Panel B: Static Network Supply

Chevrolet Bolt EV -2.906 0.00390 0.000714 0.000182 0.00127 0.000717 0.00366 0.00458 0.00615 0.00114
Chevrolet Volt 0.00277 -2.527 0.000711 0.000197 0.00122 0.000757 0.00357 0.00468 0.00606 0.00119
Chrysler Pacifica 0.00259 0.00345 -3.740 0.000165 0.00132 0.000699 0.00422 0.00450 0.00713 0.00107
Ford C-Max 0.00314 0.00456 0.000867 -2.153 0.00158 0.000962 0.00472 0.00531 0.00733 0.00145
Ford Fusion 0.00270 0.00381 0.000719 0.000180 -3.228 0.000697 0.00370 0.00444 0.00630 0.00109
Kia Soul EV 0.00292 0.00443 0.000774 0.000209 0.00141 -2.311 0.00403 0.00513 0.00651 0.00129
Mitsubishi Outlander 0.00252 0.00348 0.000713 0.000165 0.00113 0.000659 -3.532 0.00423 0.00627 0.00104
Nissan Leaf 0.00284 0.00407 0.000704 0.000194 0.00123 0.000758 0.00377 -2.754 0.00623 0.00117
Tesla Model 3 0.00263 0.00350 0.000788 0.000148 0.00125 0.000682 0.00406 0.00421 -4.155 0.000973
Volkswagen e-Golf 0.00312 0.00467 0.000752 0.000218 0.00143 0.000860 0.00424 0.00517 0.00639 -2.333
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E.5 Computing counterfactuals

Computing counterfactuals relies on a simple fixed point iteration to determine jointly net-

work size and electric vehicle sales. Recall that the structural model can be written as

Nmt = N(Qev
m,t−1,Dmt, ϵ

n), with conditional expectation

Eϵn(Nmt | Qev
m,t−1,Dmt) =

∫
N(Qev

m,t−1,Dmt, ϵ
n) dF (ϵn),

=
Smt∑
n=1

Φ

(
λN ln

(
∆v(n)

)
+ λQ ln

(
Qev

mt(n) +
ρ̃

1− ρ̃
∆qevmt(n)

)
+Dmtλ

D

)
.

Any structural function Nmt can be decomposed into its conditional expectation and a dis-

turbance, that is,

Nmt = Eϵn(Nmt | Qev
m,t−1,Dmt) + ϵmt. (21)

Notice that I can estimate ϵ̂mt using parameter estimates λ̂ and the data, that is,

ϵ̂mt = Nmt −Eϵn(Nmt | Qev
m,t−1,Dmt, λ̂). (22)

With these estimates in hand, I can then compute counterfactual networks as

Ñmt = Eϵn(Nmt | Q̃ev
m,t−1,Dmt, λ̂) + ϵ̂mt, (23)

for any sequence of Q̃ev
m,t−1. Since the structural model takes as inputs the stock of electric

vehicles and the stock of available charging stations, I need to solve counterfactuals recur-

sively starting from t = 1. Let Q̃ev
m0 = Qev

m0, Ñm0 = 0, and consider counterfactual policy τ̃ .

The algorithm is as follows:

1. Start from t = 1;

2. For each county, the initial fleet of electric vehicles is Q̃ev
m,t−1;

3. Set initial network size Ñ0
mt = Ñm,t−1;

4. Compute market shares sjmt(τ̃ , Ñ
0
mt);

5. Compute electric vehicle sales q̃evmt(Ñ
0
mt) = Lmt ·

∑
j∈EV sjmt(τ̃ , Ñ

0
mt);

6. Compute electric vehicle fleet Q̃ev
mt(Ñ

0
mt) = Qev

m,t−1 + q̃evmt(Ñ
0
mt);

7. Update network size Ñ1
mt = Eϵn(Nmt | Q̃ev

m,t−1,Dmt, λ̂) + ϵ̂mt;

69



8. Repeat steps 4-7 until convergence in Ñmt;

9. Update fleet variable Q̃ev
mt = Q̃ev

mt(Ñmt);

10. Repeat steps 2-9 recursively for t = 2, 3, ..., T .
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